## Using Graphs to Determine Integrated Rate Laws

## Skills to Develop

- To use graphs to analyze the kinetics of a reaction.

You learned that the integrated rate law for each common type of reaction (zeroth, first, or second order in a single reactant) can be plotted as a straight line. Using these plots offers an alternative to the methods described for showing how reactant concentration changes with time and determining reaction order. We will illustrate the use of these graphs by considering the thermal decomposition of $\mathrm{NO}_{2}$ gas at elevated temperatures, which occurs according to the following reaction:

$$
\begin{equation*}
2 \mathrm{NO}_{2}(\mathrm{~g}) \xrightarrow{\Delta} 2 \mathrm{NO}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \tag{1}
\end{equation*}
$$

Experimental data for this reaction at $330^{\circ} \mathrm{C}$ are listed in Table 1 ; they are provided as $\left[\mathrm{NO}_{2}\right], \ln \left[\mathrm{NO}_{2}\right]$, and $1 /\left[\mathrm{NO}_{2}\right]$ versus time to correspond to the integrated rate laws for zeroth-, first-, and second-order reactions, respectively.

Table 1: Concentration of $\mathrm{NO}_{2}$ as a Function of Time at $330^{\circ} \mathrm{C}$

| Time (s) | $\mathbf{[ \mathbf { N O } _ { \mathbf { 2 } } \mathbf { ~ } \mathbf { ( M ) }} \mathbf{\operatorname { l n } [ \mathbf { N O } _ { \mathbf { 2 } } ]}$ | $\mathbf{1} /\left[\mathbf{N O}_{\mathbf{2}} \mathbf{]}\left(\mathbf{M}^{\mathbf{- 1}} \mathbf{)}\right.\right.$ |  |
| :---: | :---: | :---: | :---: |
| 0 | $1.00 \times 10^{-2}$ | -4.605 | 100 |
| 60 | $6.83 \times 10^{-3}$ | -4.986 | 146 |
| 120 | $5.18 \times 10^{-3}$ | -5.263 | 193 |
| 180 | $4.18 \times 10^{-3}$ | -5.477 | 239 |
| 240 | $3.50 \times 10^{-3}$ | -5.655 | 286 |
| 300 | $3.01 \times 10^{-3}$ | -5.806 | 332 |
| 360 | $2.64 \times 10^{-3}$ | -5.937 | 379 |

The actual concentrations of $\mathrm{NO}_{2}$ are plotted versus time in part (a) in Figure 1. Because the plot of $\left[\mathrm{NO}_{2}\right]$ versus $t$ is not a straight line, we know the reaction is not zeroth order in $\mathrm{NO}_{2}$. A plot of $\ln \left[\mathrm{NO}_{2}\right]$ versus $t$ (part (b) in Figure 1 ) shows us that the reaction is not first order in $\mathrm{NO}_{2}$ because a first-order reaction would give a straight line. Having eliminated zeroth-order and first-order behavior, we construct a plot of $1 /\left[\mathrm{NO}_{2}\right]$ versus $t$ (part (c) in Figure 1). This plot is a straight line, indicating that the reaction is second order in $\mathrm{NO}_{2}$.


Figure 1: The Decomposition of $\mathrm{NO}_{2}$. These plots show the decomposition of a sample of $\mathrm{NO}_{2}$ at $330^{\circ} \mathrm{C}$ as (a) the concentration of $\mathrm{NO}_{2}$ versus $t$, (b) the natural logarithm of $\left[\mathrm{NO}_{2}\right]$ versus $t$, and (c) $1 /\left[\mathrm{NO}_{2}\right]$ versus $t$.
We have just determined the reaction order using data from a single experiment by plotting the concentration of the reactant as a function of time. Because of the characteristic shapes of the lines shown in Figure 2, the graphs can be used to determine the reaction order of an unknown reaction. In contrast, the method of initial rates required multiple experiments at different $\mathrm{NO}_{2}$ concentrations as well as accurate initial rates of reaction, which can be difficult to obtain for rapid reactions.

|  | Zeroth Order | First Order | Second Order |
| :---: | :---: | :---: | :---: |
| Differential rate law | $\text { Rate }=-\frac{\Delta[\mathrm{A}]}{\Delta t}=k$ | $\text { Rate }=-\frac{\Delta[\mathrm{A}]}{\Delta t}=k[\mathrm{~A}]$ | $\text { Rate }=-\frac{\Delta[\mathrm{A}]}{\Delta t}=k[\mathrm{~A}]^{2}$ |
| Concentration vs. time |  |  |  |
| Integrated rate law | $[\mathrm{A}]=[\mathrm{A}]_{0}-k t$ | $[\mathrm{A}]=[\mathrm{A}]_{0} \mathrm{e}^{-k t}$ <br> or $1 \mathrm{n}[\mathrm{~A}]=1 \mathrm{n}[\mathrm{~A}]_{0}-k t$ | $\frac{1}{[\mathrm{~A}]}=\frac{1}{[\mathrm{~A}]_{0}}+k t$ |
| Straight-line plot to determine rate constant |  |  |  |
| Relative rate | [A], M Rate, M/s | [A], M Rate, M/s | [A], M Rate, M/s |
| vs. concentration | 1 1 <br> 2 1 <br> 3 1 | 1 1 <br> 2 2 <br> 3 3 | 1 1 <br> 2 4 <br> 3 9 |
| Half-life | $t_{1 / 2}=\frac{[\mathrm{A}]_{0}}{2 k}$ | $t_{1 / 2}=\frac{0.693}{k}$ | $t_{1 / 2}=\frac{1}{k[\mathrm{~A}]_{0}}$ |
| Units of $k$, rate constant | M/s | 1/s | $M^{-1} \cdot \mathrm{~s}^{-1}$ |

Figure 2: Properties of Reactions That Obey Zeroth-, First-, and Second-Order Rate Laws

## Example 1

Dinitrogen pentoxide $\left(\mathrm{N}_{2} \mathrm{O}_{5}\right)$ decomposes to $\mathrm{NO}_{2}$ and $\mathrm{O}_{2}$ at relatively low temperatures in the following reaction:

$$
\begin{equation*}
2 \mathrm{~N}_{2} \mathrm{O}_{5}(\text { soln }) \rightarrow 4 \mathrm{NO}_{2}(\text { soln })+\mathrm{O}_{2}(g) \tag{2}
\end{equation*}
$$

This reaction is carried out in a $\mathrm{CCl}_{4}$ solution at $45^{\circ} \mathrm{C}$. The concentrations of $\mathrm{N}_{2} \mathrm{O}_{5}$ as a function of time are listed in the following table, together with the natural logarithms and reciprocal $\mathrm{N}_{2} \mathrm{O}_{5}$ concentrations. Plot a graph of the concentration versus $t$, ln concentration versus $t$, and $1 /$ concentration versus $t$ and then determine the rate law and calculate the rate constant.

| $\mathbf{T i m e ~ ( s )}$ | $\mathbf{[ \mathbf { N } _ { 2 } \mathbf { O } _ { 5 } ] ( \mathbf { M } )}$ | $\mathbf{\operatorname { l n } [ \mathbf { N } _ { 2 } \mathbf { O } _ { 5 } ]}$ | $\mathbf{1} /\left[\mathbf{N}_{\mathbf{2}} \mathbf{O}_{\mathbf{5}}\right]\left(\mathbf{M}^{\mathbf{- 1}}\right)$ |
| :---: | :---: | :---: | :---: |
| 0 | 0.0365 | -3.310 | 27.4 |
| 600 | 0.0274 | -3.597 | 36.5 |
| 1200 | 0.0206 | -3.882 | 48.5 |
| 1800 | 0.0157 | -4.154 | 63.7 |
| 2400 | 0.0117 | -4.448 | 85.5 |
| 3000 | 0.00860 | -4.756 | 116 |


| Time (s) | $\left[\mathbf{N}_{\mathbf{2}} \mathbf{O}_{\mathbf{5}}\right](\mathbf{M})$ | $\boldsymbol{\operatorname { l n }}\left[\mathbf{N}_{\mathbf{2}} \mathbf{O}_{\mathbf{5}}\right]$ | $\mathbf{1} /\left[\mathbf{N}_{\mathbf{2}} \mathbf{O}_{\mathbf{5}}\right]\left(\mathbf{M}^{\mathbf{- 1}}\right)$ |
| :---: | :---: | :---: | :---: |
| 3600 | 0.00640 | -5.051 | 156 |

Given: balanced chemical equation, reaction times, and concentrations
Asked for: graph of data, rate law, and rate constant

## Strategy:

A Use the data in the table to separately plot concentration, the natural logarithm of the concentration, and the reciprocal of the concentration (the vertical axis) versus time (the horizontal axis). Compare the graphs with those in Figure 1 to determine the reaction order.

B Write the rate law for the reaction. Using the appropriate data from the table and the linear graph corresponding to the rate law for the reaction, calculate the slope of the plotted line to obtain the rate constant for the reaction.

## SOLUTION

A Here are plots of $\left[\mathrm{N}_{2} \mathrm{O}_{5}\right]$ versus $t, \ln \left[\mathrm{~N}_{2} \mathrm{O}_{5}\right]$ versus $t$, and $1 /\left[\mathrm{N}_{2} \mathrm{O}_{5}\right]$ versus $t$ :




The plot of $\ln \left[\mathrm{N}_{2} \mathrm{O}_{5}\right]$ versus $t$ gives a straight line, whereas the plots of $\left[\mathrm{N}_{2} \mathrm{O}_{5}\right]$ versus $t$ and $1 /\left[\mathrm{N}_{2} \mathrm{O}_{5}\right]$ versus $t$ do not. This means that the decomposition of $\mathrm{N}_{2} \mathrm{O}_{5}$ is first order in $\left[\mathrm{N}_{2} \mathrm{O}_{5}\right]$.

B The rate law for the reaction is therefore

$$
\text { rate }=k\left[\mathrm{~N}_{2} \mathrm{O}_{5}\right]
$$

Calculating the rate constant is straightforward because we know that the slope of the plot of $\ln [\mathrm{A}]$ versus $t$ for a first-order reaction is $-k$. We can calculate the slope using any two points that lie on the line in the plot of $\ln \left[\mathrm{N}_{2} \mathrm{O}_{5}\right]$ versus $t$. Using the points for $t=0$ and 3000 s ,

$$
\begin{equation*}
\text { slope }=\frac{\ln \left[\mathrm{N}_{2} \mathrm{O}_{5}\right]_{3000}-\ln \left[\mathrm{N}_{2} \mathrm{O}_{5}\right]_{0}}{3000 \mathrm{~s}-0 \mathrm{~s}}=\frac{(-4.756)-(-3.310)}{3000 \mathrm{~s}}=-4.820 \times 10^{-4} \mathrm{~s}^{-1} \tag{3}
\end{equation*}
$$

Thus $k=4.820 \times 10^{-4} \mathrm{~s}^{-1}$.

## Exercise 1

1,3-Butadiene $\left(\mathrm{CH}_{2}=\mathrm{CH}-\mathrm{CH}=\mathrm{CH}_{2} ; \mathrm{C}_{4} \mathrm{H}_{6}\right)$ is a volatile and reactive organic molecule used in the production of rubber. Above room temperature, it reacts slowly to form products. Concentrations of $\mathrm{C}_{4} \mathrm{H}_{6}$ as a function of time at $326^{\circ} \mathrm{C}$ are listed in the following table along with $\ln \left[\mathrm{C}_{4} \mathrm{H}_{6}\right]$ and the reciprocal concentrations. Graph the data as concentration versus $t$, ln concentration versus $t$, and $1 /$ concentration versus $t$. Then determine the reaction order in $\mathrm{C}_{4} \mathrm{H}_{6}$, the rate law, and the rate constant for the reaction.

| Time (s) | $\left[\mathrm{C}_{4} \mathrm{H}_{6}\right]$ (M) | $\ln \left[\mathrm{C}_{4} \mathrm{H}_{6}\right]$ | 1/[ $\left.\mathrm{C}_{4} \mathrm{H}_{6}\right]\left(\mathrm{M}^{-1}\right)$ |
| :---: | :---: | :---: | :---: |
| 0 | $1.72 \times 10^{-2}$ | -4.063 | 58.1 |
| 900 | $1.43 \times 10^{-2}$ | -4.247 | 69.9 |
| 1800 | $1.23 \times 10^{-2}$ | -4.398 | 81.3 |
| 3600 | $9.52 \times 10^{-3}$ | -4.654 | 105 |


| Time (s) | $\left[\mathbf{C}_{\mathbf{4}} \mathbf{H}_{\mathbf{6}} \mathbf{( \mathbf { M } )}\right.$ | $\mathbf{l n}\left[\mathbf{C}_{\mathbf{4}} \mathbf{H}_{\mathbf{6}}\right]$ | $\mathbf{1 / [ \mathbf { C } _ { \mathbf { 4 } } \mathbf { H } _ { \mathbf { 6 } } \mathbf { ( } \mathbf { ( \mathbf { M } } \mathbf { - \mathbf { 1 } } \mathbf { ) }}$ |
| :---: | :---: | :---: | :---: |
| 6000 | $7.30 \times 10^{-3}$ | -4.920 | 137 |

Answer:



second order in $\mathrm{C}_{4} \mathrm{H}_{6} ;$ rate $=k\left[\mathrm{C}_{4} \mathrm{H}_{6}\right]^{2} ; k=1.3 \times 10^{-2} \mathrm{M}^{-1} \cdot \mathrm{~s}^{-1}$

## Summary

For a zeroth-order reaction, a plot of the concentration of any reactant versus time is a straight line with a slope of $-k$. For a first-order reaction, a plot of the natural logarithm of the concentration of a reactant versus time is a straight line with a slope of $-k$. For a second-order reaction, a plot of the inverse of the concentration of a reactant versus time is a straight line with a slope of $k$.

