Determining K_{eq} and K_{sp} for Reactions at Chemical Equilibrium

Determining K_{eq} for Reactions at Chemical Equilibrium

1. Write a balanced chemical equation.

 Make sure that the reaction is at equilibrium before you write a chemical equation.

2. Write an equilibrium expression.

- To write the expression, place the product concentrations in the numerator and the reactant concentrations in the denominator.
- The concentration of any solid or a pure liquid that takes part in the reaction is left out because these concentrations never change.
- For a reaction occurring in aqueous solution, water is omitted because the concentration of water is almost constant during the reaction.

3. Complete the equilibrium expression.

 To complete the expression, raise each substance's concentration to the power equal to the substance's coefficient in the balanced chemical equation.

Determining K_{sp} for Reactions at Chemical Equilibrium

1. Write a balanced chemical equation.

- Remember that the solubility product is only for those salts that have low solubility. Soluble salts such as sodium chloride and ammonium nitrate do not have K_{sp} values.
- Make sure that the reaction is at equilibrium.
- Chemical equations should always be written so that the solid salt is the reactant and the ions are products.

2. Write a solubility product expression.

- To write the expression, write the product of the ion concentrations.
- Concentrations of any solid or pure liquid that take part in the reaction are left out because they never change.

3. Complete the solubility product expression.

- To complete the expression, raise each concentration to a power equal to the substance's coefficient in the balanced chemical equation.
- Remember that K_{sp} values depend on temperature.