Chapter Goals

Upon completion of this chapter, you should be able to:

- ✓ Apply the law of multiple proportions, and conservation of mass.
- Describe what evidence about atomic structure was revealed by the experiments of Thomson, Millikan, and Rutherford.
- \checkmark Know the atom in terms of composition and mass.
- \checkmark Given the symbol atom or ion, determine the number of protons, neutrons, and electrons.
- ✓ Given the mass and natural abundance of all isotopes of a given element, calculate the average atomic mass of that element.
- \checkmark Know the periodic table.
- \checkmark Convert from mass to number of moles and to number of atoms.
- Reading Assignement: Sec 2.1 2.5 in Ch. 2. Read and know the main concepts of: Atomic Theory of Matter, Dalton's Atomic Theory, Rutherford's experiment, nuclear model of the atom and Modern Atomic Theory and the Laws That Led to It.

Atomic Theory of Matter: that atoms are the fundamental building blocks of matter.

Three laws led to the development and acceptance of the atomic theory are as follows:

1. Law of conservation of mass:

2. <u>Law of Definite Proportions:</u> All samples of a given compound, regardless of their source or how they were prepared, have the same proportions of their constituent elements.

- 3. <u>The Law of Multiple Proportions:</u> When two elements form two different compounds, the weights of one element that combine with a fixed weight of the other are in a ratio of small whole numbers the masses.
- J. J. Thomson had discovered the electron, a negatively charged, low mass particle present within all atoms. (Cathode ray experiment)
- Millikan's Oil Drop Experiment: Determined the charge of an electron
- Rutherford's Gold Foil Experiment:
 - \checkmark Alpha (α) particles are helium nuclei
 - ✓ Particles were fired at a thin sheet of gold foil
 - ✓ Particle hits on the detecting screen (film) are recorded
- ✓ <u>https://www.khanacademy.org/science/chemistry/electronic-structure-of-atoms/history-of-atomic-structure/v/rutherfords-gold-foil-experiment</u>
- Atom: is the smallest identifiable unit of an *element*.
 - ▶ Diameter of a nucleus is only about 10⁻¹⁵ m.
 - **Diameter of an atom is only about 10⁻¹⁰ m.**

	Mass (kg)	Mass (amu)	Charge (relative)	Charge (C)
Proton	$1.67262 imes 10^{-27}$	1.00727	+1	$+1.60218 \times 10^{-19}$
Neutron	$1.67493 imes 10^{-27}$	1.00866	0	0
Electron	0.00091×10^{-27}	0.00055	-1	$-1.60218 imes 10^{-19}$

Copyright © 2007 Pearson Prentice Hall, Inc.

• The relative size of a nucleus in an atom is the same as that of a pea in the middle of this stadium.

TABLE 2.1 Subatomic Particles

 $\frac{4}{\text{Elements are symbolized by one or two letters}}$

Atomic Number:

Atomic Mass :

of Neutrons:

Isotope: Atoms of the same element have the same number of protons but a different number of neutrons.

	Mass number	Paul and a local	Chamical symbol			
A	tomic number $\xrightarrow{Z}{Z}$	lical symbol	or name	X-A	Wass number	
	Isotope	^{12}C			¹³ C	
	Mass	12.00 an	nu		13.00 amu	
	% abundance	98.90%			1.10%	

 \rightarrow atomic mass unit (amu), An amu is a very, very, very,.... tiny fraction of a gram

1 amu = $\frac{1 \text{ gram}}{6.022 \times 10^{23}}$ = 1.661 × 10⁻²⁴ g

We must account for the <u>natural abundance</u> of each isotope when we determine the **atomic mass** of an element

Atomic mass = \sum_{n} (fraction of isotope n) × (mass of isotope n) = (fraction of isotope 1 × mass of isotope 1)

+ (fraction of isotope $2 \times \text{mass of isotope } 2$)

+ (fraction of isotope 3 \times mass of isotope 3) + ...

% Naturally occurring chlorine consists of 75.77% chlorine-35 atoms (mass 34.97 amu) and 24.23% chlorine-37 atoms (mass 36.97 amu). We can calculate its atomic mass:

Boron is 19.9% ¹⁰B and 80.1% ¹¹B. That is, ¹¹B is 80.1 percent abundant on earth. What is the atomic weight for Boron?

Periodic Table:

- Elements are arranged in order of increasing atomic number. ٠
- The rows on the periodic chart are periods. •
- Columns are groups.
- Elements in the same group have similar chemical properties. •
- A repeating pattern of reactivities. •

Periodic Table of the Elements lists all known elements according to their atomic numbers

Representative Periodic Table of the Elements								Representative										
	(main- elerr	group) ients			Ele	ment s	symbol	ic colo	ring						(main- elem	group) ents		
	1 IA			• H Gas • Li Solid $-$ at 25 °C and 1 atm pressure											18 VIIIA			
1	1 H 1.0079	2 IIA		 Br Elquid Tc Not found in nature 							13 IIIA	14 IVA	15 VA	16 VIA	17 VIIA	2 He 4.003		
2	³ Li 6 941	4 Be 9.012				— Tr	ansitic	on meta	als — 9				5 B 10.811	6 C	7 N 14 007	8 O 15 999	9 F 18 998	10 Ne 20,180
3	11 Na 22.990	12 Mg 24.305	3 IIIB	4 IVB	5 VB	6 VIB	7 VIIB	8	VIIIB	10	11 IB	12 IIB	13 Al 26.982	14 Si 28.086	15 P 30.974	16 S 32.066	17 Cl 35.453	18 Ar 39.948
4	19 K 39.098	20 Ca 40.078	21 Sc 44.956	22 Ti 47.88	23 V 50.942	24 Cr 51.996	25 Mn 54.938	26 Fe 55.845	27 Co 58.933	28 Ni 58.69	29 Cu 63.546	³⁰ Zn 65.39	31 Ga 69.723	³² Ge 72.61	33 As 74.922	34 Se 78.96	35 Br 79.904	36 Kr 83.8
5	37 Rb 85.468	38 Sr 87.62	³⁹ Y 88.906	40 Zr 91.224	41 Nb 92.906	42 Mo 95.94	43 Tc 98	44 Ru 101.07	45 Rh 102.906	46 Pd 106.42	47 Ag 107.868	48 Cd 112.441	49 In 114.82	50 Sn 118.71	51 Sb 121.76	52 Te 127.60	53 I 126.905	54 Xe 131.29
6	55 Cs 132.905	56 Ba 137.327	57 La 138.906	72 Hf 178.49	73 Ta 180.948	74 W 183.84	75 Re 186.207	76 Os 190.23	77 Ir 192.22	78 Pt 195.08	79 Au 196.967	80 Hg 200.59	81 Tl 204.383	82 Pb 207.2	83 Bi 208.980	84 Po 209	85 At 210	86 Rn 222
7	87 Fr 223	88 Ra 226.025	89 Ac 227.028	104 Rf 261	105 Db 262	106 Sg 263	107 Bh 262	108 Hs 265	109 Mt 266	110 Ds 269	111 Rg 272	112 Cn 277	Uut	Uuq	Uup	Uuh	117*	Uuo
		Lantha (rare e	nides arths)		58 Ce 140.115	59 Pr 140.908	60 Nd 144.24	61 Pm 145	62 Sm 150.36	63 Eu 151.964	64 Gd 157.25	65 Tb 158.925	66 Dy 162.5	67 Ho 164.93	68 Er 167.26	⁶⁹ Tm 168.934	70 Yb 173.04	71 Lu 174.967
		Acti	nides		90 Th 232.038	91 Pa 231.036	U 238.029	93 Np 237.048	94 Pu 244	95 Am 243	96 Cm 247	97 Bk 247	98 Cf 251	99 Es 252	100 Fm 257	101 Md 258	102 No 259	L r 262
Key cont	Key to box contents 2 He Atomic number Key to box colors Representative (main-group) Transition metals Lanthanides (rare earths) Atomic number Atomic number Key to box colors elements and actinides																	

* Element 117 is currently under review by IUPAC. © 2011 Pearson Education, Inc.

- \checkmark Atoms are neutral due to balanced numbers of protons and electrons.
- ✓ **Ions** are when this balance is not present. Either an electron is added or removed
- Charges on Common Ions:

Complete t	he following			
Element	# e lose or gain	charge of ion	symbol of ion	cation or anion
Al Cl				
Ca				
IN				

For main group elements: atoms tend to have the same number of e-'s as nearest Group 8A atom. **(Isoelectroic)**

© Brooks/Cole, Cengage Learning

Now let's scale things up:

> Molar mass

• is the atomic mass expressed in grams.

OR

- The mass of one mole of substance in grams
- Molar mass = Mass of 1 mole of a substance.
 - = Mass of 6.022×10^{23} molecules of a substance.
 - = Molecular (formula) weight of substance in

grams.

Molecular weight: The sum of atomic weights of all atoms in a molecule. Used for covalent compounds.

► Mole: One mole of any substance is the amount whose mass in grams (molar mass) is numerically equal to its molecular or formula weight.

Copyright © 2005 Pearson Education, Inc., publishing as Benjamin Cummings

çãa

Avogadro's number and the mole (A Chemist's "Dozen")

Avogadro's number: The number of molecules or formula units in a mole. N_A = 6.022 x 10²³
 6.022 x 10²³ marbles = (This many marbles would cover the earth to a depth of 50 miles)

Conceptual Plan

 Ω How many grams of lithium are in 3.50 moles of lithium?

How many moles of lithium are in 18.2 grams of lithium?

How many <u>atoms</u> of lithium are in 3.50 moles of lithium?