Acids and Bases

By

Nada Saab, Ph.D. M.A.T

Acids

Acids: taste sour and cause certain dyes to change color. Example HCl .

ACIDS

Hydronium ion: $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\left[\mathrm{H}^{+}\right]>1.0 \times 10^{-7} \mathrm{M}$

$$
\begin{gathered}
\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]=-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right] \\
{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=10^{-\mathrm{pH}}} \\
\mathrm{pH}<7.00
\end{gathered}
$$

BASES

Bases: taste bitter and feel soapy. Example NaOH

BASES

Hydroxide ion: $\left[\mathrm{OH}^{-}\right]>1.0 \times 10^{-7} \mathrm{M}$

$$
\mathrm{pOH}=-\log \left[\mathrm{OH}^{-}\right]
$$

$$
\left[\mathrm{OH}^{-}\right]=10^{-\mathrm{pOH}}
$$

$$
\mathrm{pH}>7.00
$$

Relationship Between ACIDS and BASES

K_{w} is called the ion-product constant.
At $25^{\circ} \mathrm{C}$ the ion-product of water is:

ACIDS and BASES

$$
\begin{gathered}
\mathrm{K}_{\mathrm{w}}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{OH}^{-}\right]=\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]=1.0 \times 10^{-14} \\
\mathrm{pH}+\mathrm{pOH}=14
\end{gathered}
$$

Derivatives:

$$
\begin{gathered}
\mathrm{pH}=14-\mathrm{pOH} \text { and } \mathrm{pOH}=14-\mathrm{pH} \\
{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=1.0 \times 10^{-14} /\left[\mathrm{OH}^{-}\right]} \\
{\left[\mathrm{OH}^{-}\right]=1.0 \times 10^{-14} /\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]}
\end{gathered}
$$

Strong Acid

Strong acid: 100% ionized in $\mathrm{H}_{2} \mathrm{O}$. Example HCl :

$$
\begin{gathered}
\mathrm{HCl}(g)+\mathrm{H}_{2} \mathrm{O}(l) \longrightarrow \mathrm{H}_{3} \mathrm{O}^{+}(a q)+\mathrm{Cl}^{-}(a q) \\
\mathrm{pH}=-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right] \\
{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=[\mathrm{HCl}]}
\end{gathered}
$$

Strong Base

Strong Base: 100% ionized in $\mathrm{H}_{2} \mathrm{O}$.

1) Example NaOH :

a) $\left[\mathrm{OH}^{-}\right]=[\mathrm{NaOH}]$
b) $\mathrm{pOH}=-\log \left[\mathrm{OH}^{-}\right]$
c) $\mathrm{pH}+\mathrm{pOH}=14 \mathrm{so}, \mathrm{pH}=14-\mathrm{pOH}$
2) Example $\mathrm{Ca}(\mathrm{OH})_{2}$:
$\mathrm{Ca}(\mathrm{OH})_{2} \longrightarrow \mathrm{Ca}^{2+}{ }_{(a q)}+2 \mathrm{OH}^{-}{ }_{(a q)}$
a) $\left[\mathrm{OH}^{-}\right]=2\left[\mathrm{Ca}(\mathrm{OH})_{2}\right]$

Weak Acid

Weak acids are only partially ionized in aqueous solution.
It has K_{a} : is called the acid-dissociation constant.
The larger the K_{a} the stronger the acid.

There is a mixture of ions and un-ionized acid in solution. Weak acids are in equilibrium.

$$
\mathrm{HA}(a q)+\mathrm{H}_{2} \mathrm{O}(l) \leftrightarrow \mathrm{H}_{3} \mathrm{O}^{+}(a q)+\mathrm{A}^{-}(a q)
$$

Or:

$$
\mathrm{HA}(a q) \leftrightarrow \mathrm{H}^{+}(a q)+\mathrm{A}^{-}(a q)
$$

K_{a} : acid-dissociation constant.

$$
\mathrm{K}_{\mathrm{a}}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{A}^{-}\right]}{[\mathrm{HA}]} \text { or } \quad \mathrm{K}_{\mathrm{a}}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{A}^{-}\right]}{[\mathrm{HA}]}
$$

Weak Bases

Weak bases remove protons from substance. It has K_{b} : is called the basedissociation constant. The larger the K_{a} the stronger the base.

There is an equilibrium between the base and the resulting ions:
Weak base $+\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \leftrightarrow$ conjugate acid $+\mathrm{OH}^{-}(\mathrm{aq})$
$\mathrm{NH}_{3}(a q)+\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \leftrightarrow \mathrm{NH}_{4}{ }^{+}(a q)+\mathrm{OH}^{-}(a q)$
K_{a} : acid-dissociation constant.

$$
\mathrm{K}_{\mathrm{b}}=\frac{\left[\mathrm{NH}_{4}^{+}\right]\left[\mathrm{OH}^{-}\right]}{\left[\mathrm{NH}_{3}\right]}
$$

Relationship Between K_{a} and K_{b}

At $25^{\circ} \mathrm{C}$:

Relationship Between K_{a} and K_{b}

$$
\begin{aligned}
& \mathrm{K}_{\mathrm{a}} \times \mathrm{K}_{\mathrm{b}}=1.0 \times 10^{-14} \\
& \mathrm{pK}_{\mathrm{a}}+\mathrm{pK} \mathrm{~K}_{\mathrm{b}}=14.00 \\
& \mathrm{pK} \mathrm{~K}_{\mathrm{a}}=-\log \left[\mathrm{K}_{\mathrm{a}}\right] \\
& \mathrm{pK}_{\mathrm{b}}=-\log \left[\mathrm{K}_{\mathrm{b}}\right]
\end{aligned}
$$

The larger K_{a} (and the smaller pK_{a}), the smaller K_{b} (and the larger pK_{b}). The stronger the acid, the weaker its conjugate base and vice versa.

Buffered Solutions- I

A buffer consists of a mixture of a weak acid (HX) and its conjugate base (X^{-}):

$$
\begin{aligned}
& \mathrm{HX}(\mathrm{aq}) \leftrightarrow \mathrm{H}^{+}(a q)+\mathrm{X}^{-}(\mathrm{aq}) \\
& \text { conjugate base }
\end{aligned}
$$

Henderson-Hasselbalch Equation

$$
\mathrm{pH}=\mathrm{pK}_{\mathrm{a}}+\log \frac{[\mathrm{X}-]}{-\mathrm{HX}]}=\mathrm{pK}_{\mathrm{a}}+\log \frac{[\text { base }]}{[\text { acid }]}
$$

$$
\begin{gathered}
\mathrm{pK}_{\mathrm{a}}=-\log \mathrm{K}_{\mathrm{a}} \\
\mathrm{~K}_{\mathrm{a}} \times \mathrm{K}_{\mathrm{b}}=1.0 \times 10^{-14} \\
\mathrm{pH}=-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right]
\end{gathered}
$$

Buffered Solutions-II

A buffered solution or buffer is a solution that resists a change in pH upon addition of small amounts of strong acid or strong base.

$$
\begin{aligned}
& \mathrm{HX}(\mathrm{aq}) \leftrightarrow \mathrm{H}^{+}(\mathrm{aq})+\mathrm{X}^{-}(a q) \\
& \text { conjugate base }
\end{aligned}
$$

When a small amount of OH^{-}is added to the buffer, the OH^{-}reacts with HX to produce X - and water.

When a small amount of H^{+}is added to the buffer, X^{-}is consumed to produce HX .

The $[\mathrm{X}-] /[\mathrm{HX}]$ ratio is more or less constant, so the pH does not change significantly.

Buffered Solutions-III Addition of Acid

Addition of an acid $\left(\mathrm{H}^{+}\right)$to a buffered solution:

$$
\begin{aligned}
& \mathrm{HX}(a q) \leftrightarrow \mathrm{H}^{+}(a q)+\mathrm{X}^{-}(a q) \\
& \text { conjugate base }
\end{aligned}
$$

Henderson-Hasselbalch Equation

$$
\mathrm{pH}=\mathrm{pK}_{\mathrm{a}}+\log \frac{\left[\text { base }-\mathrm{H}^{+}\right]}{\left[\text {acid }+\mathrm{H}^{+}\right]}=\mathrm{pK}_{\mathrm{a}}+\log \frac{\left[\mathrm{X}^{-}-\mathrm{H}^{+}\right]}{\left[\mathrm{HX}+\mathrm{H}^{+}\right]}
$$

Buffered Solutions-III Addition of Base

Addition of a base (OH^{-}) to a buffered solution:

$$
\begin{aligned}
& \mathrm{HX}(\mathrm{aq}) \leftrightarrow \mathrm{H}^{+}(\mathrm{aq})+\mathrm{X}^{-}(\mathrm{aq}) \\
& \text { conjugate base }
\end{aligned}
$$

Henderson-Hasselbalch Equation

$$
\mathrm{pH}=\mathrm{pK}_{\mathrm{a}}+\log \frac{\left[\text { base }+\mathrm{OH}^{-}\right]}{\left[\text {acid }-\mathrm{OH}^{-}\right]}=\mathrm{pK}_{\mathrm{a}}+\log \frac{\left[\mathrm{X}^{-}+\mathrm{OH}^{-}\right]}{\left[\mathrm{HX}^{\left.-\mathrm{OH}^{-}\right]}\right.}
$$

