Acids and Bases

By

Nada Saab, Ph.D. M.A.T

Acids

Acids: taste sour and cause certain dyes to change color. Example HCI.

ACIDS
Hydronium ion: [H ₃ O+] = [H+] > 1.0 x 10 ⁻⁷ M
$pH = -log[H^+] = -log[H_3O^+]$
[H ₃ O ⁺] = 10 ^{-pH}
pH < 7.00

BASES

Bases: taste bitter and feel soapy. Example NaOH

Relationship Between ACIDS and BASES

 K_w is called the ion-product constant. At 25°C the ion-product of water is:

ACIDS and BASES

```
K_w = [H_3O^+][OH^-] = [H^+][OH^-] = 1.0 \times 10^{-14}
```

pH + pOH = 14

Derivatives:

pH = 14 - pOH and pOH = 14 - pH

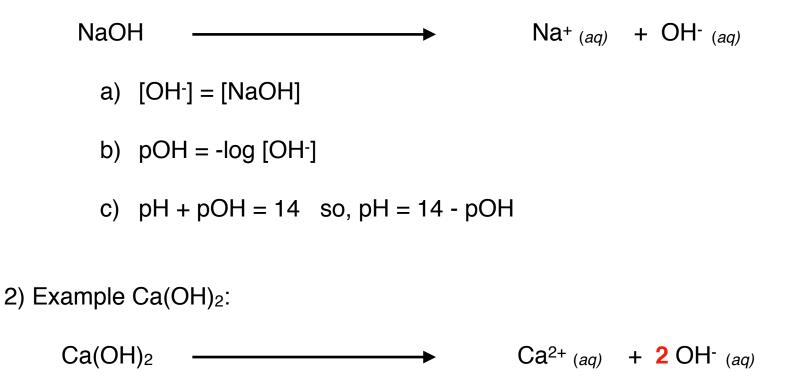
 $[H_3O^+] = 1.0 \times 10^{-14} / [OH^-]$

 $[OH^{-}] = 1.0 \times 10^{-14} / [H_{3}O^{+}]$

Strong Acid

Strong acid: 100% ionized in H₂O. Example HCI:

 $HCl(g) + H_2O(l) \longrightarrow H_3O^+(aq) + Cl^-(aq)$


 $pH = -log[H_3O^+]$

 $[H_3O^+] = [HCI]$

Strong Base

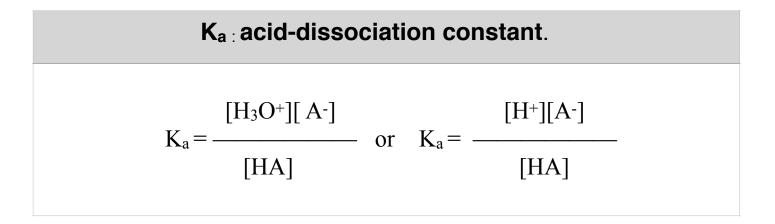
Strong Base: 100% ionized in H₂O.

a) $[OH^{-}] = 2 [Ca(OH)_{2}]$

Weak Acid

Weak acids are only partially ionized in aqueous solution.

It has K_a ; is called the **acid-dissociation constant**.

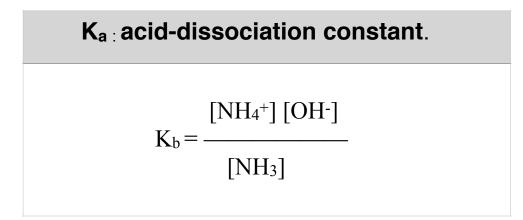

The larger the K_a the stronger the acid.

There is a mixture of ions and un-ionized acid in solution. Weak acids are in equilibrium.

$$HA(aq) + H_2O(l) \leftrightarrow H_3O^+(aq) + A^-(aq)$$

Or:

$$\operatorname{HA}(aq) \leftrightarrow \operatorname{H}^{+}(aq) + \operatorname{A}^{-}(aq)$$



Weak Bases

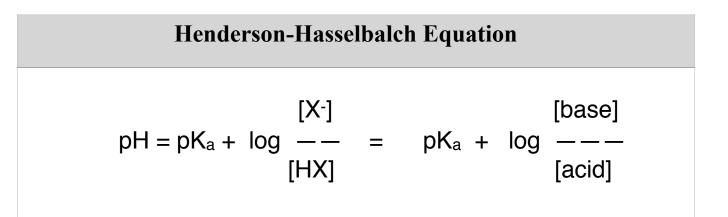
Weak bases remove protons from substance. It has K_{b} : is called the **base-dissociation constant**. The larger the K_a the stronger the base.

There is an equilibrium between the base and the resulting ions: Weak base + H₂O (I) \leftrightarrow conjugate acid + OH⁻ (*aq*)

 $NH_3(aq) + H_2O(I) \leftrightarrow NH_4^+(aq) + OH^-(aq)$

Relationship Between Ka and Kb

At 25°C:


Relationship Between K_a and K_b
$K_a \times K_b = 1.0 \times 10^{-14}$
$pK_{a} + pK_{b} = 14.00$
pK _a = -log [K _a]
$pK_b = -log [K_b]$

The larger K_a (and the smaller pK_a), the smaller K_b (and the larger pK_b). The stronger the acid, the weaker its conjugate base and vice versa.

Buffered Solutions-I

A buffer consists of a mixture of a weak acid (HX) and its conjugate base (X⁻):

 $\begin{array}{rcl} \mathsf{HX}(aq) & \leftrightarrow & \mathsf{H^+}(aq) & + & \mathsf{X^-}(aq) & & \mathsf{K_a} \\ & & & & & & \mathsf{conjugate\ base} \end{array}$

 $pK_a = -log K_a$ $K_a \ge K_b = 1.0 \ge 10^{-14}$

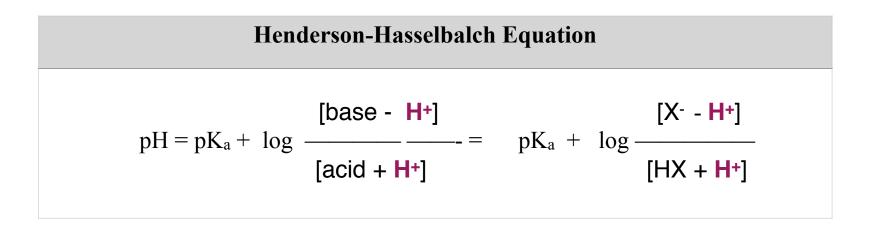
 $pH = -log[H_3O^+]$

Buffered Solutions-II

A buffered solution or buffer is a solution that resists a change in pH upon addition of small amounts of strong acid or strong base.

 $\begin{array}{rcl} \mathsf{HX}(aq) & \leftrightarrow & \mathsf{H^+}(aq) & + & \mathsf{X^-}(aq) & & \mathsf{K_a} \\ & & & & & & \mathsf{conjugate\ base} \end{array}$

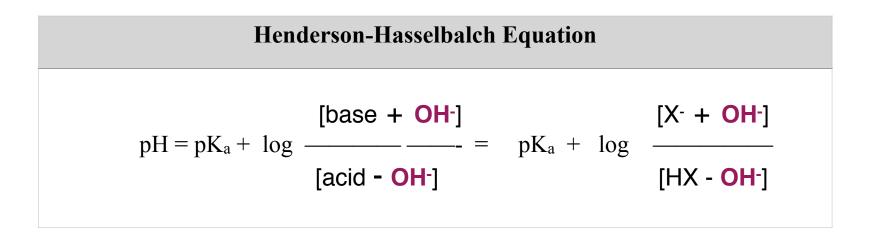
When a small amount of OH⁻ is added to the buffer, the OH⁻ reacts with HX to produce X⁻ and water.


When a small amount of H⁺ is added to the buffer, X⁻ is consumed to produce HX.

The [X⁻]/[HX] ratio is more or less constant, so the pH does not change significantly.

Buffered Solutions-III Addition of Acid

Addition of an acid (H+) to a buffered solution:


 $\begin{array}{rcl} \mathsf{HX}(aq) & \leftrightarrow & \mathsf{H^+}(aq) & + & \mathsf{X^-}(aq) & & \mathsf{K_a} \\ & & & & & & \mathsf{conjugate\ base} \end{array}$

Buffered Solutions-III Addition of Base

Addition of a base (OH-) to a buffered solution:

 $\begin{array}{rcl} \mathsf{HX}(aq) & \leftrightarrow & \mathsf{H^+}(aq) & + & \mathsf{X^-}(aq) & & \mathsf{K_a} \\ & & & & & & \mathsf{conjugate\ base} \end{array}$

