Chapter 16 Acid-Base Equilibria

16.1 Acids and Bases: A Brief Review

- Acids: taste sour and cause certain dyes to change color.
- Bases: taste bitter and feel soapy.
- Arrhenius concept o acids and bases:
 - An acid is a substance that, when dissolved in water, increases in concentration of H⁺ ions.

♣ Example: HCI is an acid

• An Arrhenius base is a substance that, when dissolved in water, increases the concentration of OH-.

♣ Example: NaOH is a base.

• This definition is quite narrow in scope as it limits us to aqueous solutions.

16.2 Bronsted-Lowry Acids and Bases

• More general definition for acids and bases is bases on the fact that acidbase reactions involve proton transfer.

The Ion H⁺ in Water

- The H^+ (aq) ion is simply a proton with no surrounding valence electrons.
- In water, clusters of hydrates of H⁺ (aq) ions form.
- The simplest cluster is H_3O^+ (aq)
 - We call this a **hydronium ion**.
 - Larger clusters are also possible (such as $H_5O_2^+$ and $H_9O_4^+$)
- Generally we use H^+ (aq) and H_3O^+ (aq) interchangeably.

Proton-Transfer Reactions

• In the Bronsted-Lowry system, a **Bronsted-Lowry acid** is a species that donates H⁺ and a **Bronsted-Lowry base** is a species that accepts H⁺.

• Therefore a Bronsted-Lowry base does not need to contain OH-

NH₃ is a Bronsted-Lowry base but not an Arrhenius base.

- Consider NH₃ (aq) + H₂O (l) \leftrightarrow NH₄⁺ (aq) + OH⁻ (aq):
- H₂O donates a proton to ammonia.
 - Water is acting as an acid.
- NH₃ accepts a proton from water.
 - Ammonia is acting as a base.
 - Amphoteric substances can behave as acids and bases.

Conjugate Acid-Base Pairs

- Whatever is left of the acid after the proton is donated is called its conjugate base.
- Similarly, a conjugate acid is formed by adding a proton to the base.
- Consider HA (aq) + H₂O (l) \leftrightarrow H₃O⁺ (aq) + A⁻ (aq):
 - HA and A- are conjugate acid-base pair
 - A- is called the **conjugate base**.
- After H₂O (base) gains a proton it is converted into H₃O⁺ (acid).
 - H₃O⁺ is the **conjugate acid**.
 - Therefore, H_2O and H_3O^+ are a conjugate acid-base pair.

Likewise, for the reaction between NH₃ and H₂O, we have

Relative Strengths of Acids and Bases

- Show a slight tendency to abstract proton.
- In every acid-base reaction, the position of the equilibrium favors the

transfer of a proton from the stronger acid to the stronger base.

- H⁺ is the strongest acid that can exist in equilibrium in aqueous solution.
- OH- is the strongest base that can exist in equilibrium in aqueous solution.

Strong acid: 100% ionized in H₂O Strong base: 100% protonated in H₂O.

$$HCl(g) + H_2O(l) \longrightarrow H_3O^+(aq) + Cl^-(aq)$$
$$CH_3COOH(aq) + H_2O(l) \rightleftharpoons H_3O^+(aq) + CH_3COO^-(aq)$$

16.3 The Auto-ionization of Water

• We can write an equilibrium constant expression for the auto-ionization of water.

$$K_{eq} = \frac{[H_3O^+] [OH^-]}{[H_2O]^2}$$

• Because $H_2O(1)$ is a pure liquid, we can simplify this expression:

 $[H_2O]^2 K_{eq} = [H_3O^+] [OH^-] = K_w$

- K_w is called the ion-product constant.
- At 25°C the ion-product of water is:

 $1.0 \text{ x } 10^{-14} = \text{K}_{\text{w}} = [\text{H}_{3}\text{O}^{+}] \text{ [OH-]} = [\text{H}^{+}] \text{ [OH-]}$

1.0 x 10-14 =[H₃O⁺] [OH-]=[H⁺] [OH-]

- This applies to pure water as well as to aqueous solutions.
 - A solution is neutral if $[OH^-] = [H_3O^+]$
 - If the $[H_3O^+] > [OH^-]$, the solution is acidic.
 - If the $[H_3O^+] < [OH^-]$, the solution is basic.

16.4 The pH Scale

- In most solutions [H⁺] is quite small.
- We express the [H⁺] in terms of **pH**.

$$pH = -\log[H^+] = -\log[H_3O^+]$$

- This is a logarithmic scale
- A change in [H⁺] by a factor of 10 causes the pH to change by 1 unit.
- Most pH values fall between 0 and 14.
 - In neutral solutions at $25 \circ C$, pH = 7.00
 - In acidic solutions, [H⁺] >1.0 x 10⁻⁷ so pH < 7.00.
 As the pH decreases, the acidity of the solution increases.

• In acidic solutions, [H⁺] < 1.0 x 10⁻⁷ so pH > 7.00.

As the pH increases, the basicity of the solution increase (acidity decreases).

pOH and Other "p" Scales

• We can use a similar system to describe the [OH-].

pOH= -log[OH-]

- Recall that the value of K_w at 25°C is 1.0 x 10^{-14} $\,$
 - Thus we can describe a relationship between pH and pOH.

 $-\log[H^+] + (-\log[OH^-]) = pH + pOH = -\log K_w = 14.00$

pH + pOH = 14.00

Measuring pH

•

- The most accurate method to measure pH is to use a pH meter.
 - However, certain dyes change color as pH changes.
 - They are called acid-base indicators.
 - Indicators are less precise than pH meters.
 - Many indicators do not have a sharp color change as a function of pH.
 - Most acid-base indicators can exist as either an acid or a base.
 - Some natural products can be used as indicators (tea is colorless in acid and brown in base; red cabbage extract is another natural indicator).

Figure below is pH ranges for common acid–base indicators. Most indicators have a useful range of about 2 pH units.

Methyl red

Bromthymol blue

Phenolphthalein

16.5 Strong Acids and Bases

Strong Acids

• The most common strong acids are HCl, HBr, HI, HNO₃, HClO₃, HClO₄, and H₂SO₄.

- Strong acids are strong electrolytes.
 - Ionize completely in solution:

 $HNO_3(aq) + H_2O(l) \rightarrow H_3O^+(aq) + NO_3^-(aq)$

• Example: Nitric acid ionizes completely in solution.

Since H⁺ and H₃O⁺ are used interchangeably, we write

 $HNO_3(aq) + H^+(aq) \rightarrow NO_3^-(aq)$

- In solution the strong acid is usually the only source of H⁺.
 - Therefore, the pH of a solution of a monoprotic acid may usually be calculated directly from the initial molarity of the acid.

Strong Bases

• The most common strong bases are ionic hydroxides of the alkali metals or the heavier alkaline earth metals (e.g., NaOH, KOH, and $Ca(OH)_2$ are all strong bases.

- Strong bases are strong electrolytes and dissociate completely in solution.
 - For example: NaOH (aq) \rightarrow Na⁺ (aq) + OH⁻ (aq)

• The pOH (and thus the pH) of a strong base may be calculated using the initial molarity of the base.

- Not all bases contain the OH- ion.
 - The oxide, hydride and nitride ions are stronger bases than hydroxide.
 - They are thus able to abstract a proton from water and generate OH-.

 $O^{2-}(aq) + H_2O(l) \rightarrow 2OH^-(aq)$ H- (aq) + H₂O (l) \rightarrow H₂ (g) + OH- (aq) N³⁻ (aq) + 3H₂O (l) \rightarrow NH₃ (aq) + 3OH- (aq)

16.6 Weak Acids

- Weak acids are only partially ionized in aqueous solution.
 - There is a mixture of ions and un-ionized acid in solution.
 - Therefore, weak acids are in equilibrium.

Or:

$$HA (aq) + H_2O (l) \leftrightarrow H_3O^+ (aq) + A^- (aq)$$

$$HA (aq) \leftrightarrow H^+ (aq) + A^- (aq)$$

• We can write an equilibrium constant expression or this dissociation:

$$K_a = \frac{[H_3O^+][A^-]}{[HA]}$$
 or $K_a = \frac{[H^+][A^-]}{[HA]}$

- K_a is called the **acid-dissociation constant.**
- The subscript "a" indicates that this is the equilibrium constant for the dissociation of an acid.
- Note that $[H_2O]$ is omitted from the K_a expression. (H_2O is a pure liquid.)
- The larger the K_a the stronger the acid.
- K_a is larger since there are more ions present at equilibrium relative to unionized molecules.
- If $K_a >> 1$, then the acid is complexly ionized and the acid is a strong acid.

completely dissociate

partially dissociate

Using K_a to Calculate pH

• If the K_a value is quite small, we find that we can make a simplifying assumption.

- Assume that x is the negligible compared to the initial concentration of the acid.
- If x is <5% of the initial concentration, the assumption is probably a good one.
- If x is > 5% of the initial concentration, then it may be best to solve the quadratic equation or use successive approximations.
- Weak acids are only partially ionized.
- Percent ionization is another method to assess acid strength.
- For the reaction

$$HA(aq) \leftrightarrow H^+(aq) + A^-(aq)$$

% ionization =
$$\frac{[H^+]_{equilibrium}}{[HA]_{initial}} \times 100$$

• Percent ionization relates to the equilibrium H⁺ concentration,

[H⁺] _{equilibrium} to the initial HA concentration, [HA]_{initial}.

	$CH_3COOH(aq) \leftarrow$	\Rightarrow H ⁺ (aq) +	CH ₃ COO ⁻ (aq)
Initial	0.30 M	0	0
Change	-x M	+xM	+xM
Equilibrium	(0.30 - x) M	x M	x M

$$K_a = \frac{[\mathrm{H}^+][\mathrm{CH}_3\mathrm{COO}^-]}{[\mathrm{CH}_3\mathrm{COOH}]} = \frac{(x)(x)}{0.30 - x} = 1.8 \times 10^{-5}$$

$$K_a = \frac{x^2}{0.30} = 1.8 \times 10^{-5}$$

$$x^{2} = (0.30)(1.8 \times 10^{-5}) = 5.4 \times 10^{-6}$$
$$x = \sqrt{5.4 \times 10^{-6}} = 2.3 \times 10^{-3}$$
$$[H^{+}] = x = 2.3 \times 10^{-3} M$$
$$pH = -\log(2.3 \times 10^{-3}) = 2.64$$

Percent ionization of CH₃COOH = $\frac{0.0023 M}{0.30 M} \times 100\% = 0.77\%$

Polyprotic Acids

- **Polyprotic acids** have more than one ionizable proton.
- The protons are removed in successive steps
 - Consider the weak acid, H₂SO₃ (sulfurous acid):

$H_2SO_3(aq) \leftrightarrow H^+(aq) + HSO_3^-(aq)$	$K_{a1} = 1.7 \text{ x } 10^{-2}$
$\mathrm{HSO}_{3^{-}}(\mathrm{aq}) \leftrightarrow \mathrm{H}^{+}(\mathrm{aq}) + \mathrm{SO}_{3^{2^{-}}}(\mathrm{aq})$	$K_{a2} = 6.4 \times 10^{-8}$

16.7 Weak Bases

- Weak bases remove protons from substances.
- There is an equilibrium between the base and the resulting ions:

Weak base + H₂O (l) \leftrightarrow conjugate acid + OH- (aq)

• Example:

$$NH_3(aq) + H_2O(1) \leftrightarrow NH_{4^+}(aq) + OH^-(aq)$$

• The base-dissociation constant, K_b, is defined as

$$K_b = \frac{[NH_{4^+}] [OH^-]}{[NH_3]}$$

• The larger K_b, the stronger the base.

Types of Weak Bases

- Weak bases generally fall into one of two categories
 - Neutral substances with a lone pair of electrons that can accept protons.

Most neutral weak bases contain nitrogen.

Amines are related ammonia and have one or more N-H

bonds replaced with N-C bonds (e.g., CH₃NH₂ is methylamine).

- Anions of weak acids are also weak bases.
- Example: CIO- is the conjugate base of HCIO (weak acid): CIO- (aq) + H₂O(1) \leftrightarrow HCIO (aq) + OH-(aq) K_b= 3.3 x 10⁻⁷

16.8 Relationship Between K_a and K_b

- The net reaction is the auto-ionization of water.
 - $H_2O(1) \leftrightarrow H^+(aq) + OH^-(aq)$
- Recall that:

$$\mathbf{K}_{\mathbf{w}} = [\mathbf{H}^+][\mathbf{O}\mathbf{H}^-]$$

For a conjugate acid-base pair:

$$K_a \times K_b = K_w$$

• Alternatively,

$$pK_a + pK_b = pK_w = 14.00 \text{ (at } 25^{\circ}\text{C)}$$

• Thus, the larger K_a (and the smaller pK_a), the smaller K_b (and the larger pK_b).

• The stronger the acid, the weaker its conjugate base and vice versa.

16.9 Acid-Base Properties of Salt Solutions

- Nearly all the salts are strong electrolytes.
- Many salt ions can react with water to form OH- or H⁺.
- This process is called **hydrolysis**.
 - Anions from weak acids are basic.
 - Anions from strong acids are neutral.
 - Anions with ionizable protons (e.g., HSO₄-) are amphoteric.
 They are capable of acting as an acid or a base.
 - All cations, except those of the akali metals or heavier alkaline earth metals are weak acids.

• The pH of a solution may be qualitatively predicted using the following guidelines:

- Salts derived from a strong acid and strong base are neutral.
 Examples: NaCl, Ca(NO₃)₂.
- Salts derived from a strong base and weak acide are basic
 Examples: NaClO₃ Ba(C₂H₃O₂)₂
- Salts derived from a weak base and strong acid are acidic.
 Example:: NH4CL
- Salts derived from a weak acid and weak base can be either acidic or basic.

Equilibrium rules apply!

16.10 Acid-Base Behavior and Chemical Structure

Factors That Affect Acid Strength

- Consider H-X
- For this substance to be an acid
 - The H-X bond must be polar with H^{8+} and X^{8-}

- In ionic hydrides, the bond polarity is reversed
 - The H-X bond is polar with H⁸⁻ and X⁸⁺
 - In this case, the substance is a base.

Binary Acids

- The H-X bond polarity is important in determining relative acid strength in any period of the periodic table.
 - Acid strength increases and base strength decreases from left to right across a period as the electronegativity of X increases.

Oxyacids

• Acids that contain OH groups (and often additional oxygen atoms) bound to the central atom are called **oxyacids**.

Example is sulfuric acid.

- The strength of the acid depends on Y and the atoms attached to Y.
 - As the electronegativity of Y increases, so does the acidity of the substance.

- As the number of O atoms attached to Y increase the O-H bond polarity, and consequently the strength of the acid increases.
 - Example, HClO is a weaker acid than HClO₂ which is weaker than HClO₃ which is weaker than HClO₄

Carboxylic Acids

- There is a large class of acids that contain a =COOH group (a carboxyl group).
- Acids that contain this group are called **carboxylic acids**.
- Examples: acetic acid, benzoic acid, formic acid.

Formic acid

Benzoic acid

- Why are these molecules acidic?
- The additional oxygen atom on the carboxyl group increases the polarity of the O-H bond and stabilizes the conjugate base.
- The conjugate base exhibits resonance.
- This gives it the ability to delocalize the negative charge over the carboxylate group, further increasing the stability of the conjugate base.

16.11 Lewis Acids and Bases

- Lewis proposed a new definition of acids and bases that emphasizes the shared electron pair.
 - A Lewis acid is an electron pair acceptor
 - A Lewis base is an electron pair donor
 - Note: Lewis acids and bases do not need to contain protons.

