Titration of weak acid with strong base

Remember:

- Before adding the base: It is a weak acid HA (Ka)
- After adding the base: It is a buffer: $pH = pK_a + \log [base]/[acid]$
- At half the volume of the equivalence point: [base]=[acid] or [A-] = [HA]
 - $pH = pK_a$
 - So, [H+] = K_a
 - Buffer is most effective
- At the equivalence point: It is a weak base ($K_b = 10^{-14}/K_a$
 - pH is governed by the concentration of the buffer base (A-)
 - pH at the equivalence point is greater than 7 (pH > 7).
- After the equivalence point: It is a strong base.
- [] = moles / Volume (L)

Note: For the titration of weak base with a strong acid. The pH at the equivalence point is lower than 7 (pH < 7)

Indicator: $pH = pK_a \pm 1$

The pKa of the weak acid to be used in the buffer should be as close as possible to the desired pH.

PH = pKa + log [base]/[acid]. For most effective buffer: [base]/[acid] = 1

Case Study

50 ml (0,05 l) of 0.1M acetic acid solution (HC₂H₃O₂, $K_a = 1.8 \times 10^{-5}$) with 0.1 M NaOH.

1) First calculate the volume of the base needed for the equivalence point:

M acid x V acid = M base x V base $0.1 \times 50 = 0.1 \times V$ base V base = 50 ml

So, we need 50 ml of NaOH to completely neutralize the 50 mL of acetic acid.

2) At a volume half the volume of the equivalence point, $pH = pK_a$

So, at 25 ml, pH = pK_a = -log K_a = -log 1.8 x 10⁻⁵

3) Calculate the moles of the acid;

Moles of $HC_2H_3O_2$ = moles of H^+ = Volume x Molarity = 0.05 x 0.1 = 0.005 moles

A) No base is added:

It is a weak acid

	$HC_2H_3O_2$	=	$C_2H_3O_2^{-1}$	+ H+
Initial	0.1			
Change	- X		Х	Х
Equilibrium	0.1 - X		Х	Х

 $K_a = x^2 / 0.1$ X = 1.3 x 10⁻³ M

pH = **2.87**

B) Add 10 mL of 0.1 M NaOH:

•

Calculate the moles of NaOH = Molarity x Volume (L) = $0.1 \times 0.01 = 0.001$ mole Mole of HC₂H₃O₂ = 0.005 mole

Total volume is: 50 + 10 = 60 ml = 0.060 Liter

	HC ₂ H ₃ O ₂ +	OH - =	$C_2H_3O_2^- + H_2O$
Before reaction	0.005 mole	0.001	
After reaction	0.005 - 0.001	0	0.001
	= 0.004 mole		0.001
[]:	0.004/ 0.06		0.001 / 0.06

Buffer: $pH = pK_a + \log [base]/[acid] = -\log 1.8 \times 10^{-5} + \log (0.001/0.06) \times (0.06/0.004)$

pH = **4.14**

C) Add 25 mL of NaOH

Half the volume of the equivalence point: $pH = pK_a$ So, $[H^+] = K_a$

D) Add 40 mL of NaOH

pH = **5.35**

6 of 18

E) Add 50 mL of 0.1 M NaOH:

Calculate the moles of NaOH = Molarity x Volume (L) = $0.1 \times 0.05 = 0.005$ mole

Mole of $HC_2H_3O_2 = 0.005$ mole

Total volume is: 50 + 50 = 100 ml = 0.1 Liter

	HC ₂ H ₃ O ₂ +	OH -	$= C_2H_3O_2^- + H_2O$
Before reaction	0.005 mole	0.005	
After reaction	0.005 - 0.005 = 0 mole		0.005
[.]:			0.005/0.1 = 0.05M

Flip the reaction; $C_2H_3O_2$ - is a weak base.

	$C_2H_3O_2 - +$	H ₂ O	=.	$HC_2H_3O_2$	+ OH -
Initial	0.05				
Change	- X			Х	Х
Equilibrium	0.05 -X			Х	Х

$$\begin{split} K_b &= 10^{-14}/K_a \\ K_b &= 10^{-14}/1.8 \ x \ 10^{-5} \\ K_b &= 5.6 \ x \ 10^{-10} \end{split}$$

 $K_{b}=x^{2}/0.05$

$$X = 5.3 \times 10^{-6} = [OH^{-1}]$$

pH = 14- pOH = **8.72**

F) Add 60 mL of 0.1 M NaOH

Calculate the moles of NaOH = Molarity x Volume (L) = $0.1 \times 0.06 = 0.006$ mole

Mole of $HC_2H_3O_2 = 0.005$ mole

Total volume is: 50 + 60 = 110 ml = 0.11 Liter

	HC ₂ H ₃ O ₂ +	OH -	=	$C_2H_3O_2^{-1}$	+ H ₂ O
Before reaction	0.005 mole	0.006			
After reaction	0.005 - 0.005 = 0 mole	0.006-0.005 = 0.001			
[.]:		0.001/0.11 =	9.	1 x 10 ⁻³ M	

[OH ⁻] = 9.1 x 10⁻³ M

pH = 14 - pOH = **11.96**

G) Add 75 mL of 0.1 M NaOH

pH = 14 - pOH = **12.3**

Titration of strong acid with strong base.

Titration of 50 mL (0.05 L) of 0.200 M HNO₃ with 0.100 M solution of NaOH.

[] = Molarity = Moles / Volume (L)

Moles = Molarity x Volume (L) Moles of HNO_3 = moles of H⁺ = Volume x Molarity = 0.05 x 0.2 = 0.01 moles

A) No NaOH was added

1) $[HNO_3] = [H^+] = 0.2 M,$

 $pH = -log [H^+] = -log 0.2 = 0.699$

B) Add 10 mL (0.01L) of 0.1 M NaOH

Moles of NaOH = Volume (I) x Molarity = 0.01 x 0.1 = 0.001 moles of OH-

Total volume: 0.05 + 0.01 = 0.06 Liter = Vt

Moles of $HNO_3 = 0.01$ moles of H^+

C) Add 20 mL (0.02 L) of 0.1 M NaOH

Moles of NaOH = Volume (I) x Molarity = 0.02 x 0.1= 0.002 moles of OH-

Total volume: 0.05 + 0.02 = 0.07 Liter = Vt

Moles of $HNO_3 = 0.01$ moles H^+

	H+		+	OH-		=.	H ₂ O
Before addition	0.01			0.002			
After addition		0.01-(0.002		0		
	0.008	moles	5				
[H+] = moles/Vt		0.008	/0.07 :	= 0.11	Μ		

pH = -log 0.11 = **0.942**

D) Add 50 mL (0.05 L) of 0.1 M NaOH

Moles of NaOH = Volume (I) x Molarity = 0.05 x 0.1= 0.005 moles of OH-

Total volume: 0.05 + 0.05 = 0.1 Liter = Vt

Moles of $HNO_3 = 0.01$ moles of H^+

E) Add 100 mL (0.1 L) of 0.1 M NaOH

Moles of NaOH = Volume (I) x Molarity = $0.1 \times 0.1 = 0.01$ moles of OH-

Moles of $HNO_3 = 0.01$ moles of H^+

Equivalence point: pH = 7

F) Add 150 mL (0.15 L) of 0.1M NaOH

Moles of NaOH = Volume (I) x Molarity = 0.15 x 0.1= 0.015 moles of OH-

Total volume: 0.05 + 0.15 mL = 0.2 Liter = Vt

Moles of $HNO_3 = 0.01$ moles H^+

	H⁺	+	OH-	=.	H ₂ O
Before addition	0.01		0.015		
After addition	0.01-0.01		0.015-0.01		
	0		0.005 mole		
[OH-] = moles/Vt			0.005 /0.2 :	= 0.025 N	М

pOH = -log [OH-]= -log 0.025

pH = 14 - pOH = **12.4**

G) Add 200 mL (0.2 L) of 0.1M NaOH

Moles of NaOH = Volume (I) x Molarity = 0.2 x 0.1 = 0.02 moles of OH-

Total volume: 0.05 + 0.2 = 0.25 Liter = Vt

Moles of $HNO_3 = 0.01$ moles H^+

	H+	+ OH-	=.	H ₂ O
Before reaction	0.01	0.02		
After reaction	0.01-0.01	0.02-0.01		
	0	0.01mole		
[OH ⁻] = moles/Vt		0.01/0.25 =	0.04 M	

pOH = -log [OH⁻]= -log 0.04 pH = 14 - pOH = **12.60**

Titration of strong base with strong acid

FIGURE 15.2

The pH curve for the titration of 100.0 mL of 0.50 *M* NaOH with 1.0 *M* HCl. The equivalence point occurs at 50.00 mL of HCl added, since at this point 5.0 mmol H^+ has been added to react with the original 5.0 mmol OH⁻.