Titration of weak acid with strong base

Remember:

- Before adding the base: It is a weak acid HA (Ka)
- After adding the base: It is a buffer: $\mathrm{pH}=\mathrm{pK}_{\mathrm{a}}+\log [$ base]/[acid]
- At half the volume of the equivalence point: [base]=[acid] or [A-] = [HA]
- $\mathrm{pH}=\mathrm{pK}_{\mathrm{a}}$
- So, $\left[\mathrm{H}^{+}\right]=\mathrm{K}_{\mathrm{a}}$
- Buffer is most effective
- At the equivalence point: It is a weak base $\left(K_{b}=10-14 / K_{a}\right.$
- pH is governed by the concentration of the buffer base (A-)
- pH at the equivalence point is greater than $7(\mathrm{pH}>7)$.
- After the equivalence point: It is a strong base.
- [] = moles / Volume (L)

Note: For the titration of weak base with a strong acid. The pH at the equivalence point is lower than 7 ($\mathrm{pH}<7$)

Indicator: $\mathrm{pH}=\mathrm{pK}_{\mathrm{a}} \pm 1$

The pKa of the weak acid to be used in the buffer should be as close as possible to the desired pH .
$\mathrm{PH}=\mathrm{pKa}+\log [$ base $] /[$ acid $]$. For most effective buffer: [base]/[acid] $=1$

Case Study

$50 \mathrm{ml}(0,05 \mathrm{I})$ of 0.1 M acetic acid solution $\left(\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}, \mathrm{~K}_{\mathrm{a}}=1.8 \times 10^{-5}\right)$ with 0.1 M NaOH .

1) First calculate the volume of the base needed for the equivalence point:

$$
\begin{gathered}
M \text { acid } \times V \text { acid }=M \text { base } \times V \text { base } \\
0.1 \times 50=0.1 \times V \text { base } \\
V \text { base }=50 \mathrm{ml}
\end{gathered}
$$

So, we need 50 ml of NaOH to completely neutralize the 50 mL of acetic acid.
2) At a volume half the volume of the equivalence point, $\mathrm{pH}=\mathrm{pK}_{\mathrm{a}}$

So, at $25 \mathrm{ml}, \mathrm{pH}=\mathrm{pK}_{\mathrm{a}}=-\log \mathrm{K}_{\mathrm{a}}=-\log 1.8 \times 10^{-5}$
3) Calculate the moles of the acid;

Moles of $\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}=$ moles of $\mathrm{H}^{+}=$Volume \timesMolarity

$$
=0.05 \times 0.1=0.005 \text { moles }
$$

A) No base is added:

It is a weak acid

$$
\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2} \quad=\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}+\mathrm{H}^{+}
$$

Initial	0.1		
Change	$-X$	X	X
Equilibrium	$0.1-X$	X	X

$$
\begin{aligned}
& \mathrm{K}_{\mathrm{a}}=\mathrm{x}^{2} / 0.1 \\
& \mathrm{X}=1.3 \times 10^{-3} \mathrm{M} \\
& \quad \mathrm{pH}=\mathbf{2 . 8 7}
\end{aligned}
$$

B) Add 10 mL of 0.1 M NaOH :

Calculate the moles of $\mathrm{NaOH}=$ Molarity \times Volume (L)
$=0.1 \times 0.01=0.001 \mathrm{~mole}$
Mole of $\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}=0.005$ mole
Total volume is: $50+10=60 \mathrm{ml}=0.060$ Liter

$$
\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}+\mathrm{OH}^{-}=\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}{ }^{-}+\mathrm{H}_{2} \mathrm{O}
$$

Before reaction 0.005 mole $\quad 0.001$

After reaction	$0.005-0.001$	0	0.001
	$=0.004$ mole	0.001	
[]:	$0.004 / 0.06$	$0.001 / 0.06$	

Buffer: $\mathrm{pH}=\mathrm{pK} \mathrm{a}_{\mathrm{a}}+\log [$ base $] /[$ acid $]=-\log 1.8 \times 10^{-5}+\log (0.001 / 0.06) \times(0.06 / 0.004)$

$$
\mathrm{pH}=4.14
$$

C) Add $\mathbf{2 5} \mathrm{mL}$ of NaOH

Half the volume of the equivalence point: $\mathrm{pH}=\mathrm{pK}_{\mathrm{a}}$ So, $\left[\mathrm{H}^{+}\right]=\mathrm{K}_{\mathrm{a}}$
D) Add 40 mL of NaOH

$$
\mathrm{pH}=5.35
$$

E) Add 50 mL of 0.1 M NaOH :

Calculate the moles of $\mathrm{NaOH}=$ Molarity \times Volume (L)

$$
=0.1 \times 0.05=0.005 \mathrm{~mole}
$$

Mole of $\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}=0.005$ mole
Total volume is: $50+50=100 \mathrm{ml}=0.1$ Liter

	$\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}+\mathrm{OH}-$	
Before reaction	0.005 mole	0.005
After reaction	$0.005-0.005$ $=0$ mole	
[.] :		0.005
2		
		$0.005 / 0.1=0.05 \mathrm{M}$

Flip the reaction; $\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$ - is a weak base.
$\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}{ }^{-}+\mathrm{H}_{2} \mathrm{O} \quad=\quad \mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}+\mathrm{OH}^{-}$
Initial 0.05

Change -X
X X
Equilibrium $\quad 0.05-X$
X X

$$
\begin{aligned}
& \mathrm{K}_{\mathrm{b}}=10^{-14} / \mathrm{K}_{a} \\
& \mathrm{~K}_{\mathrm{b}}=10^{-14 / 1.8 \times 10^{-5}} \\
& \mathrm{~K}_{\mathrm{b}}=5.6 \times 10^{-10}
\end{aligned}
$$

$$
\begin{aligned}
& K_{b}=x^{2} / 0.05 \\
& X=5.3 \times 10^{-6}=\left[\mathrm{OH}^{-}\right]
\end{aligned}
$$

$$
\mathrm{pH}=14-\mathrm{pOH}=8.72
$$

F) Add 60 mL of 0.1 M NaOH

Calculate the moles of $\mathrm{NaOH}=$ Molarity \times Volume (L)

$$
=0.1 \times 0.06=0.006 \mathrm{~mole}
$$

Mole of $\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}=0.005$ mole
Total volume is: $50+60=110 \mathrm{ml}=0.11$ Liter

	$\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}+\mathrm{OH}-$	
Before reaction	0.005 mole	0.006

$$
\begin{aligned}
& {\left[\mathrm{OH}^{-}\right]=9.1 \times 10^{-3} \mathrm{M}} \\
& \mathrm{pH}=14-\mathrm{pOH}=\mathbf{1 1 . 9 6}
\end{aligned}
$$

G) Add 75 mL of 0.1 M NaOH

$$
\mathrm{pH}=14-\mathrm{pOH}=12.3
$$

Titration of strong acid with strong base.

Titration of $50 \mathrm{~mL}(0.05 \mathrm{~L})$ of $0.200 \mathrm{M} \mathrm{HNO}_{3}$ with 0.100 M solution of NaOH .
[] = Molarity = Moles / Volume (L)

Moles $=$ Molarity \times Volume (L)
Moles of $\mathrm{HNO}_{3}=$ moles of $\mathrm{H}^{+}=$Volume \timesMolarity $=0.05 \times 0.2=0.01$ moles
A) No NaOH was added

1) $\left[\mathrm{HNO}_{3}\right]=\left[\mathrm{H}^{+}\right]=0.2 \mathrm{M}$,

$$
\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]=-\log 0.2=0.699
$$

B) Add $10 \mathrm{~mL}(0.01 \mathrm{~L})$ of 0.1 M NaOH

Moles of $\mathrm{NaOH}=$ Volume $(\mathrm{l}) \times$ Molarity $=0.01 \times 0.1=0.001$ moles of OH^{-}
Total volume: $0.05+0.01=0.06$ Liter $=\mathrm{Vt}$
Moles of $\mathrm{HNO}_{3}=0.01$ moles of H^{+}

C) Add $20 \mathrm{~mL}(0.02 \mathrm{~L})$ of 0.1 M NaOH

Moles of $\mathrm{NaOH}=$ Volume ($(\mathrm{I}) \times$ Molarity $=0.02 \times 0.1=0.002$ moles of OH^{-}
Total volume: $0.05+0.02=0.07$ Liter $=\mathrm{Vt}$
Moles of $\mathrm{HNO}_{3}=0.01$ moles H^{+}

| | H^{+} | + | $\mathbf{O H}^{-}$ | $=$. |
| ---: | :--- | :--- | :--- | :--- | $\mathrm{H}_{2} \mathrm{O}$

```
After addition 0.01-0.002 0
    0.008 moles
[ H+] = moles/Vt }\quad0.008/0.07=0.11 
    pH=-log 0.11 = 0.942
```

D) Add $50 \mathrm{~mL}(0.05 \mathrm{~L})$ of 0.1 M NaOH

Moles of $\mathrm{NaOH}=$ Volume $(I) \times$ Molarity $=0.05 \times 0.1=0.005$ moles of OH^{-}
Total volume: $0.05+0.05=0.1$ Liter $=\mathrm{Vt}$
Moles of $\mathrm{HNO}_{3}=0.01$ moles of H^{+}

E) Add $100 \mathrm{~mL}(0.1 \mathrm{~L})$ of 0.1 M NaOH

Moles of $\mathrm{NaOH}=$ Volume $(I) \times$ Molarity $=0.1 \times 0.1=0.01$ moles of OH^{-}
Moles of $\mathrm{HNO}_{3}=0.01$ moles of H^{+}
Equivalence point: $\mathrm{pH}=\mathbf{7}$

F) Add $150 \mathrm{~mL}(0.15 \mathrm{~L})$ of 0.1 M NaOH

Moles of $\mathrm{NaOH}=$ Volume (I) \times Molarity $=0.15 \times 0.1=0.015{\text { moles } \text { of } \mathrm{OH}^{-}}^{-}$
Total volume: $0.05+0.15 \mathrm{~mL}=0.2$ Liter $=\mathrm{Vt}$
Moles of $\mathrm{HNO}_{3}=0.01$ moles H^{+}

G) Add $200 \mathrm{~mL}(0.2 \mathrm{~L})$ of 0.1 M NaOH

Moles of $\mathrm{NaOH}=$ Volume (I) \times Molarity $=0.2 \times 0.1=0.02$ moles of OH^{-}
Total volume: $0.05+0.2=0.25$ Liter $=\mathrm{Vt}$
Moles of $\mathrm{HNO}_{3}=0.01$ moles H^{+}

	H^{+}	$+\mathrm{OH}^{-} \quad=. \quad \mathrm{H}_{2} \mathrm{O}$
Before reaction	0.01	0.02
After reaction	$0.01-0.01$	$0.02-0.01$
	0	0.01 mole
		$0.01 / 0.25=0.04 \mathrm{M}$

$$
\begin{aligned}
& \mathrm{pOH}=-\log \left[\mathrm{OH}^{-}\right]=-\log 0.04 \\
& \mathrm{pH}=14-\mathrm{pOH}=\mathbf{1 2 . 6 0}
\end{aligned}
$$

Titration of strong base with strong acid

FIGURE 15.2
The pH curve for the titration of 100.0 mL of 0.50 M NaOH with 1.0 M HCl . The equivalence point occurs at 50.00 mL of HCl added, since at this point $5.0 \mathrm{mmol} \mathrm{H}{ }^{+}$has been added to react with the original $5.0 \mathrm{mmol} \mathrm{OH}^{-}$.

