Titration of strong acid with strong base.

Titration of 50 mL (0.05 L) of 0.200 M HNO₃ with 0.100 M solution of NaOH.

[] = Molarity = Moles / Volume (L)

Moles = Molarity x Volume (L) Moles of HNO_3 = moles of H⁺ = Volume x Molarity = 0.05 x 0.2 = 0.01 moles

A) No NaOH was added

1) $[HNO_3] = [H^+] = 0.2 M,$

 $pH = -log [H^+] = -log 0.2 = 0.699$

B) Add 10 mL (0.01L) of 0.1 M NaOH

Moles of NaOH = Volume (I) x Molarity = 0.01 x 0.1 = 0.001 moles of OH-

Total volume: 0.05 + 0.01 = 0.06 Liter = Vt

Moles of $HNO_3 = 0.01$ moles of H^+

C) Add 20 mL (0.02 L) of 0.1 M NaOH

Moles of NaOH = Volume (I) x Molarity = $0.02 \times 0.1 = 0.002$ moles of OH-

Total volume: 0.05 + 0.02 = 0.07 Liter = Vt

Moles of $HNO_3 = 0.01$ moles H^+

	H+		+	OH-		=.	H ₂ O
Before addition	0.01			0.002			
After addition		0.01-(0.002		0		
	0.008	moles	5				
[H+] = moles/Vt		0.008	/0.07 :	= 0.11	Μ		

pH = -log 0.11 = **0.942**

D) Add 50 mL (0.05 L) of 0.1 M NaOH

Moles of NaOH = Volume (I) x Molarity = 0.05 x 0.1 = 0.005 moles of OH-

Total volume: 0.05 + 0.05 = 0.1 Liter = Vt

Moles of $HNO_3 = 0.01$ moles of H⁺

E) Add 100 mL (0.1 L) of 0.1 M NaOH

Moles of NaOH = Volume (I) x Molarity = 0.1 x 0.1 = 0.01 moles of OH-

Moles of $HNO_3 = 0.01$ moles of H^+

Equivalence point: pH = 7

F) Add 150 mL (0.15 L) of 0.1M NaOH

Moles of NaOH = Volume (I) x Molarity = 0.15 x 0.1= 0.015 moles of OH-

Total volume: 0.05 + 0.15 mL = 0.2 Liter = Vt

Moles of $HNO_3 = 0.01$ moles H^+

	H⁺	+	OH-	=.	H ₂ O
Before addition	0.01		0.015		
After addition	0.01-0.01		0.015-0.01		
	0		0.005 mole	•	
[OH [.]] = moles/Vt			0.005 /0.2 = 0.025 M		

 $pOH = -log [OH^{-}] = -log 0.025$

pH = 14 - pOH = **12.4**

G) Add 200 mL (0.2 L) of 0.1M NaOH

Moles of NaOH = Volume (I) x Molarity = 0.2 x 0.1 = 0.02 moles of OH-

Total volume: 0.05 + 0.2 = 0.25 Liter = Vt

Moles of $HNO_3 = 0.01$ moles H^+

	H+	+ OH-	=.	H₂O
Before reaction	0.01	0.02		
After reaction	0.01-0.01	0.02-0.01		
	0	0.01mole		
[OH-] = moles/Vt		0.01/0.25 =	0.04 M	

pOH = -log [OH⁻]= -log 0.04 pH = 14 - pOH = **12.60**

Titration of strong base with strong acid

FIGURE 15.2

The pH curve for the titration of 100.0 mL of 0.50 *M* NaOH with 1.0 *M* HCl. The equivalence point occurs at 50.00 mL of HCl added, since at this point 5.0 mmol H^+ has been added to react with the original 5.0 mmol OH⁻.