Titration of strong acid with strong base.

Titration of $50 \mathrm{~mL}(0.05 \mathrm{~L})$ of $0.200 \mathrm{M} \mathrm{HNO}_{3}$ with 0.100 M solution of NaOH .
[] = Molarity = Moles / Volume (L)

Moles $=$ Molarity \times Volume (L)
Moles of $\mathrm{HNO}_{3}=$ moles of $\mathrm{H}^{+}=$Volume \timesMolarity $=0.05 \times 0.2=0.01$ moles
A) No NaOH was added

1) $\left[\mathrm{HNO}_{3}\right]=\left[\mathrm{H}^{+}\right]=0.2 \mathrm{M}$,

$$
\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]=-\log 0.2=0.699
$$

B) Add $10 \mathrm{~mL}(0.01 \mathrm{~L})$ of 0.1 M NaOH

Moles of $\mathrm{NaOH}=$ Volume $(I) \times$ Molarity $=0.01 \times 0.1=0.001$ moles of OH^{-}
Total volume: $0.05+0.01=0.06$ Liter $=\mathrm{Vt}$
Moles of $\mathrm{HNO}_{3}=0.01$ moles of H^{+}

C) Add $20 \mathrm{~mL}(0.02 \mathrm{~L})$ of 0.1 M NaOH

Moles of $\mathrm{NaOH}=$ Volume (I$) \times$ Molarity $=0.02 \times 0.1=0.002$ moles of OH^{-}
Total volume: $0.05+0.02=0.07$ Liter $=\mathrm{Vt}$
Moles of $\mathrm{HNO}_{3}=0.01$ moles H^{+}

| | H^{+} | + | $\mathbf{O H}^{-}$ | $=$. |
| ---: | :--- | :--- | :--- | :--- | $\mathrm{H}_{2} \mathbf{O}$

```
After addition 0.01-0.002 0
    0.008 moles
[ H+] = moles/Vt }\quad0.008/0.07=0.11 
    pH=-log 0.11 = 0.942
```

D) Add $50 \mathrm{~mL}(0.05 \mathrm{~L})$ of 0.1 M NaOH

Moles of $\mathrm{NaOH}=$ Volume $(I) \times$ Molarity $=0.05 \times 0.1=0.005$ moles of OH^{-}
Total volume: $0.05+0.05=0.1$ Liter $=\mathrm{Vt}$
Moles of $\mathrm{HNO}_{3}=0.01$ moles of H^{+}

E) Add $100 \mathrm{~mL}(0.1 \mathrm{~L})$ of 0.1 M NaOH

Moles of $\mathrm{NaOH}=$ Volume $(I) \times$ Molarity $=0.1 \times 0.1=0.01$ moles of OH^{-}
Moles of $\mathrm{HNO}_{3}=0.01$ moles of H^{+}
Equivalence point: $\mathrm{pH}=\mathbf{7}$

F) Add $150 \mathrm{~mL}(0.15 \mathrm{~L})$ of 0.1 M NaOH

Moles of $\mathrm{NaOH}=$ Volume (I) \times Molarity $=0.15 \times 0.1=0.015{\text { moles } \text { of } \mathrm{OH}^{-}}^{-}$
Total volume: $0.05+0.15 \mathrm{~mL}=0.2$ Liter $=\mathrm{Vt}$
Moles of $\mathrm{HNO}_{3}=0.01$ moles H^{+}

G) Add $200 \mathrm{~mL}(0.2 \mathrm{~L})$ of 0.1 M NaOH

Moles of $\mathrm{NaOH}=$ Volume (I) \times Molarity $=0.2 \times 0.1=0.02$ moles of OH^{-}
Total volume: $0.05+0.2=0.25$ Liter $=\mathrm{Vt}$
Moles of $\mathrm{HNO}_{3}=0.01$ moles H^{+}

| | H^{+} | $+\mathrm{OH}^{-} \quad=. \quad \mathrm{H}_{2} \mathrm{O}$ |
| :--- | :--- | :--- | :--- |
| Before reaction | 0.01 | 0.02 |
| After reaction | $0.01-0.01$ | $0.02-0.01$ |
| | 0 | 0.01 mole |
| | | $0.01 / 0.25=0.04 \mathrm{M}$ |

$$
\begin{aligned}
& \mathrm{pOH}=-\log \left[\mathrm{OH}^{-}\right]=-\log 0.04 \\
& \mathrm{pH}=14-\mathrm{pOH}=\mathbf{1 2 . 6 0}
\end{aligned}
$$

Titration of strong base with strong acid

FIGURE 15.2
The pH curve for the titration of 100.0 mL of 0.50 M NaOH with 1.0 M HCl . The equivalence point occurs at 50.00 mL of HCl added, since at this point $5.0 \mathrm{mmol} \mathrm{H}{ }^{+}$has been added to react with the original $5.0 \mathrm{mmol} \mathrm{OH}^{-}$.

