Titration of weak acid with strong base

Remember:

- Before adding the base: It is a weak acid HA (Ka)
- After adding the base: It is a buffer: $pH = pK_a + log [base]/[acid]$
- At half the volume of the equivalence point: [base]=[acid] or [A-] = [HA]
 - pH = pK_a
 - So, $[H^+] = K_a$
 - · Buffer is most effective
- At the equivalence point: It is a weak base $(K_b = 10^{-14}/K_a)$
 - pH is governed by the concentration of the buffer base (A-)
 - pH at the equivalence point is greater than 7 (pH > 7).
- After the equivalence point: It is a strong base.
- [] = moles / Volume (L)

Note: For the titration of weak base with a strong acid. The pH at the equivalence point is lower than 7 (pH < 7)

Indicator: $pH = pK_a + 1$

The pKa of the weak acid to be used in the buffer should be as close as possible to the desired pH.

PH = pKa + log [base]/[acid]. For most effective buffer: [base]/[acid] = 1

Case Study

50 ml (0,05 l) of 0.1M acetic acid solution (HC₂H₃O₂, $K_a = 1.8 \times 10^{-5}$) with 0.1 M NaOH.

1) First calculate the volume of the base needed for the equivalence point:

M acid x V acid = M base x V base

$$0.1 \times 50 = 0.1 \times V$$
 base
V base = 50 ml

So, we need 50 ml of NaOH to completely neutralize the 50 mL of acetic acid.

2) At a volume half the volume of the equivalence point, pH = pKa

So, at 25 ml, pH = pK_a = -log K_a = -log 1.8 x
$$10^{-5}$$

3) Calculate the moles of the acid;

Moles of
$$HC_2H_3O_2$$
 = moles of H^+ = Volume x Molarity
= 0.05 x 0.1 = 0.005 moles

A) No base is added:

It is a weak acid

$$HC_2H_3O_2 = C_2H_3O_2^- + H^+$$

Initial 0.1

Change - X X X

Equilibrium 0.1 - X X X

$$K_a = x^2 / 0.1$$

$$X = 1.3 \times 10^{-3} M$$

B) Add 10 mL of 0.1 M NaOH:

Calculate the moles of NaOH = Molarity x Volume (L) = $0.1 \times 0.01 = 0.001$ mole

Mole of $HC_2H_3O_2 = 0.005$ mole

Total volume is: 50 + 10 = 60 ml = 0.060 Liter

 $HC_2H_3O_2 + OH^- = C_2H_3O_2^- + H_2O$

Before reaction 0.005 mole 0.001

After reaction 0.005 - 0.001 0 0.001

= 0.004 mole 0.001

[]: 0.004/0.06 0.001/0.06

Buffer: $pH = pK_a + log [base]/[acid] = -log 1.8 \times 10^{-5} + log (0.001/0.06) \times (0.06/0.004)$

pH = **4.14**

C) Add 25 mL of NaOH

Half the volume of the equivalence point:
$$pH = pK_a$$

So, $[H^+] = K_a$

- At half the volume of the equivalence point: [base]=[acid] or [A-] = [HA]
 - $pH = pK_a$
 - So, $[H^+] = K_a$
 - Buffer is most effective

D) Add 40 mL of NaOH

$$pH = 5.35$$

E) Add 50 mL of 0.1 M NaOH:

Calculate the moles of NaOH = Molarity x Volume (L) = $0.1 \times 0.05 = 0.005$ mole

Mole of $HC_2H_3O_2 = 0.005$ mole

Total volume is: 50 + 50 = 100 ml = 0.1 Liter

 $HC_2H_3O_2 + OH^- = C_2H_3O_2^- + H_2O$

Before reaction 0.005 mole 0.005

After reaction 0.005 - 0.005 0.005

= 0 mole

[.]: 0.005/0.1 = 0.05M

Flip the reaction; $C_2H_3O_2$ is a weak base.

 $C_2H_3O_2$ + H_2O =. $HC_2H_3O_2$ + OH^{-1}

Initial 0.05

Change - X X X

Equilibrium 0.05 -X X X

$$K_b = 10^{-14}/K_a$$

$$K_b = 10^{-14}/1.8 \times 10^{-5}$$

$$K_b = 5.6 \times 10^{-10}$$

$$K_b = x^2 / 0.05$$

$$X = 5.3 \times 10^{-6} = [OH^-]$$

$$pH = 14 - pOH = 8.72$$

- At the equivalence point: It is a weak base $(K_b = 10^{-14}/K_a)$
 - pH is governed by the concentration of the buffer base (A-)
 - pH at the equivalence point is greater than 7 (pH > 7).

F) Add 60 mL of 0.1 M NaOH

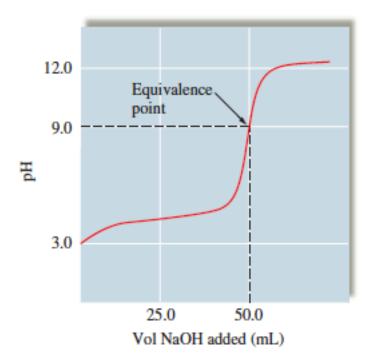
Calculate the moles of NaOH = Molarity x Volume (L) = $0.1 \times 0.06 = 0.006$ mole

Mole of $HC_2H_3O_2 = 0.005$ mole

Total volume is: 50 + 60 = 110 ml = 0.11 Liter

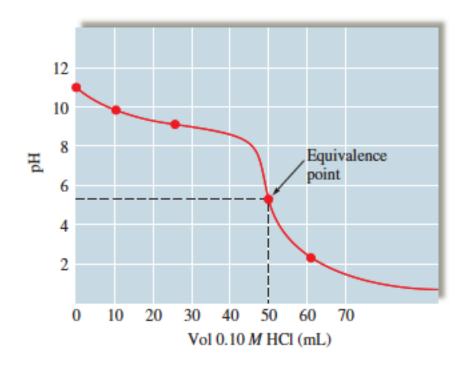
$$HC_2H_3O_2 + OH^- = C_2H_3O_2^- + H_2O$$

Before reaction 0.005 mole 0.006


$$= 0 \text{ mole} = 0.001$$

[.]:
$$0.001/0.11 = 9.1 \times 10^{-3} M$$

$$[OH -] = 9.1 \times 10^{-3} M$$


$$pH = 14 - pOH = 11.96$$

G) Add 75 mL of 0.1 M NaOH

Titration of weak base with strong acid

At the equivalence point: pH< 7

