3.1 The Mole

The mole ('mol') is a convenient measure of chemical equation.

1 mole of something = 6.0221421×10^{23} particules of that thing.

This number is called **Avogadro's number**.

Thus, 1 mole of carbon atoms = 6.0221421×10^{23} carbon atoms.

Experimentally, a mole of 12 C has a mass of 12 g.

Molecules and Moles:

 $1 \text{ mole} = 6.0221421 \text{ x } 10^{23} \text{ molecules}$

We can write two conversion factors:

a) 1 mole / 6.0221421 x10²³ molecules
b) 6.0221421 x10²³ molecules / 1 mole

Example: How many molecules is in 3×10^{23} moles?

 3×10^{23} moles (6.0221421 x10²³ molecules / 1 mole) = 0.500 molecules

Ions and Mole Ions:

1 mole ion = 6.0221421×10^{23} ions

We can write two conversion factors:

c) 1 mole ion/ 6.0221421×10^{23} ions d) 6.0221421×10^{23} ions / 1 mole ions

Example: How many ions is in 3×10^{23} mole ions?

 3×10^{23} moles ions (6.0221421 x10²³ ions / 1 mole ions) = 0.500 ions