3.1 The Mole

The mole ('mol') is a convenient measure of chemical equation.
1 mole of something $=\mathbf{6 . 0 2 2 1 4 2 1} \times 10^{\mathbf{2 3}}$ particules of that thing.

This number is called Avogadro's number.
Thus, 1 mole of carbon atoms $=6.0221421 \times 10^{23}$ carbon atoms.

Experimentally, a mole of ${ }^{12} \mathrm{C}$ has a mass of 12 g .

Molecules and Moles:

1 mole $=6.0221421 \times 10^{23}$ molecules
We can write two conversion factors:
a) 1 mole $/ 6.0221421 \times 10^{23}$ molecules
b) 6.0221421×10^{23} molecules / 1 mole

Example: How many molecules is in 3×10^{23} moles?

3×10^{23} moles $\left(6.0221421 \times 10^{23}\right.$ molecules $/ 1$ mole $)=0.500$ molecules

Ions and Mole Ions:

1 mole ion $=6.0221421 \times 10^{23}$ ions
We can write two conversion factors:
c) 1 mole ion/ 6.0221421×10^{23} ions
d) 6.0221421×10^{23} ions / 1 mole ions

$$
\text { Example: How many ions is in } 3 \times 10{ }^{23} \text { mole ions? }
$$

$$
\text { Given unit } \times \frac{\text { desired unit }}{\text { given unit }}=\text { desired unit }
$$

3×10^{23} moles ions $\left(6.0221421 \times 10^{23}\right.$ ions $/ 1$ mole ions $)=0.500$ ions

