

Projectile Launched Horizontally

Projectile Launched Vertically

Projectile motion along the X axis (Horizontally) $\mathrm{a}=0 \mathrm{~m} / \mathrm{s}^{2}$	Projectile motion along the Y axis (Vertically) $a=a_{g}=g=-9.8 \mathrm{~m} / \mathrm{s}^{2}$
$\begin{aligned} & V_{x}=V_{o x} \\ & X=V_{o x} t \end{aligned}$	$\begin{gathered} V_{y}=V_{o y}+g t \\ Y=1 / 2\left(V_{o y}+V_{y}\right) t \\ V_{y^{2}}=V_{o y}{ }^{2}+2 g Y \\ Y=V_{o y} t+1 / 2 g t^{2} \end{gathered}$

Maximum height: $\quad Y=1 / 2 \mathrm{~V}_{\text {oy }} \mathrm{t} \quad\left(\mathrm{V}_{\text {top }}=0,\right)$
Time to reach the ground (hang Time) $=\mathrm{t}=-2 \mathrm{~V}_{\mathrm{oy}} / \mathrm{g}$
Time at maximum height $=t=-V_{\text {oy }} / \mathrm{g}$

