Potential Energy-Class notes

Nada Saab, Ph.D. Western International High School

2020-2021

65. Weightlifting A weightlifter raises a 180-kg barbell to a height of 1.95 m. What is the increase in the potential energy of the barbell?

 $PE = m \times g \times h = 180 \times 9.81 \times 1.95 = 3,443.31 \text{ joules}$

Example 1: How much gravitational potential energy does a rock of mass m = 4.0 kg gain if it is lifted to the height h = 25 m?

 $PE = m \times g \times h = 4.0 \times 9.81 \times 25 = 9.8 \times 10^{2} J = 980 Joules$

Surface of the Earth

Antwan raised a 2 kg physics book (m = 2 kg) from a table 75 cm above the floor ($h_1 = 0.75$ m) to a shelf 2.15 m above the floor ($h_2 = 2.15$ m). What was the change in the potential energy of the system?

a) Position (1): $PE_1 = m \times g \times h_1 = 2 \times 9.81 \times 0.75 = 14.71$ joules.

- **b)** Position (2): $PE_2 = m \times g \times h_2 = 2 \times 9.81 \times 2.15 = 42.183$ Joules
- c) Change in potential energy between position (1) and (2)

$$= PE_2 - PE_1 = 42.183 - 14.71 = 27.473$$
 Joules $= Work$

or:

Change in potential energy =
$$\mathbf{m} \times \mathbf{g} (\mathbf{h}_2 - \mathbf{h}_1)$$

= 2 x 9.81 (2.15 - 0.75)
= 27.468 Joules = Work

Work = The change in potential energy

Change in potential energy = PE₂ - PE₁

$$= m \times g \times h_2 - m \times g \times h_1$$

$$= m \times g (h_2 - h_1) = work$$

Change in potential energy = m x g (
$$h_2 - h_1$$
)
= 2 x 9.81 (2.15 - 0.75)
= 27.468 Joules

A 10.0 kg test rocket is fired vertically from Cape Canaveral. Its fuel gives it a potential energy of 1960 Joules by the time the rocket engine burns all the fuel. What additional height will the rocket rise?

$$m = 10.0 \text{ kg},$$

 $h = ?$

$$m = 10.0 \text{ kg}$$
, $PE = 1960 \text{ joules}$ $g = 9.81 \text{ m/s}^2$

$$g = 9.81 \text{ m/s}^2$$

$$PE = m x g x h$$

$$1960 = 10 \times 9.81 \times h$$

$$1960 = 98.1 \times h$$

$$\frac{1960}{98.1} = \frac{98.1}{98.1} \times h$$

$$19.979 \text{ m} = \text{h}$$

A hallway display of energy is constructed in which several people pull on a rope that lifts a block 1.00 m. The display indicates that 1.00 joules of work is done. What is the mass of the block?

h = 1 m , W = PE = 1 joules,
$$g = 9.81 \text{ m/s}^2$$

m = ?
PE = m x g x h
1 = m x 9.81 x 1
1 = m x 9.81
1 = m x 9.81
9.81 9.81
0.1 kg= m

The total mechanical energy of an object remains constant

Total energy in the initial position = Total energy in the final position

$$KE_o + PE_o = KE_f + PE_f$$

Change in potential energy = PE_f - PE_o

$$= m \times g \times h_f - m \times g \times h_o$$

$$= m \times g (h_f - h_o) = work = -1/2 m v_o^2$$