Potential Energy-Class notes

Nada Saab, Ph.D. Western International High School

2020-2021

65. Weightlifting A weightlifter raises a $180-\mathrm{kg}$ barbell

 to a height of 1.95 m . What is the increase in the potential energy of the barbell?
$\mathrm{PE}=\mathrm{mxgxh}=180 \times 9.81 \times 1.95=3,443.31$ joules

Example 1: How much gravitational potential energy does a rock of mass $\mathrm{m}=4.0 \mathrm{~kg}$ gain if it is lifted to the height $\mathrm{h}=25 \mathrm{~m}$?
$\mathrm{PE}=\mathrm{mxg} \times \mathrm{h}=4.0 \times 9.81 \times 25=9.8 \times 10^{2} \mathrm{~J}=980$ Joules

Surface of the Earth

Antwan raised a 2 kg physics book ($\mathrm{m}=2 \mathrm{~kg}$) from a table 75 cm above the floor ($h_{1}=0.75 \mathrm{~m}$) to a shelf 2.15 m above the floor ($\mathrm{h}_{2}=2.15 \mathrm{~m}$). What was the change in the potential energy of the system?

a) Position (1): $\mathrm{PE}_{1}=\mathrm{m} \times \mathrm{g} \times \mathrm{h}_{1}=2 \times 9.81 \times 0.75=14.71$ joules.
b) Position (2): $\mathrm{PE}_{2}=\mathrm{m} \times \mathrm{g} \times \mathrm{h}_{2}=2 \times 9.81 \times 2.15=42.183$ Joules
c) Change in potential energy between position (1) and (2)
$=P E_{2}-\mathrm{PE}_{1}=42.183-14.71=27.473$ Joules $=$ Work
or:
Change in potential energy $=\mathbf{m} \mathbf{x g}\left(\mathbf{h}_{\mathbf{2}}-\mathbf{h}_{1}\right)$

$$
\begin{aligned}
& =2 \times 9.81 \text { (2.15-0.75) } \\
& =27.468 \text { Joules = Work }
\end{aligned}
$$

Work $=$ The change in potential energy
Change in potential energy $=\mathrm{PE}_{2}-\mathrm{PE}_{1}$

$$
\begin{aligned}
& =m \times g \times h_{2}-m \times g \times h_{1} \\
& =m \times g\left(h_{2}-h_{1}\right)=\text { work }
\end{aligned}
$$

Change in potential energy $=m \times g\left(h_{2}-h_{1}\right)$

$$
\begin{aligned}
& =2 \times 9.81(2.15-0.75) \\
& =27.468 \text { Joules }
\end{aligned}
$$

A 10.0 kg test rocket is fired vertically from Cape Canaveral. Its fuel gives it a potential energy of 1960 Joules by the time the rocket engine burns all the fuel. What additional height will the rocket rise?

$$
\begin{array}{lll}
\begin{array}{l}
\mathrm{m}=10.0 \mathrm{~kg}, \\
\mathrm{~h}=?
\end{array} & \mathrm{PE}=1960 \text { joules } & \mathrm{g}=9.81 \mathrm{~m} / \mathrm{s}^{2} \\
& \mathrm{PE}=\mathrm{m} \times \mathrm{g} \times \mathrm{h} \\
1960 & =10 \times 9.81 \times \mathrm{h} \\
1960 & =98.1 \times \mathrm{h} \\
& \frac{1960}{98.1}=\frac{98.1}{98.1} \times \mathrm{h} \\
& & \\
& & \\
& & \\
& &
\end{array}
$$

A hallway display of energy is constructed in which several people pull on a rope that lifts a block 1.00 m . The display indicates that 1.00 joules of work is done. What is the mass of the block?

$$
\begin{aligned}
& \mathrm{h}=1 \mathrm{~m}, \quad \mathrm{~W}=\mathrm{PE}=1 \text { joules, } \quad \mathrm{g}=9.81 \mathrm{~m} / \mathrm{s}^{2} \\
& \mathrm{~m}=?
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{PE}=\mathrm{m} \times \mathrm{g} \times \mathrm{h} \\
& 1=\mathrm{m} \times 9.81 \times 1 \\
& 1=\mathrm{m} \times 9.81 \\
& \underline{1}=\mathrm{m} \times \underline{9.81} \\
& 9.81 \\
& 0.1 \mathrm{~kg}=\mathrm{m}
\end{aligned}
$$

$P E_{o}=m \times g \times h_{0}$

$$
K E_{o}=1 / 2 \mathrm{~m} \mathrm{~V}_{0}{ }^{2}
$$

total $E_{t}=K E_{f}+$ PE $_{f}$
total $E_{t}=K E_{o}+P E_{o}$

The total mechanical energy of an object remains constant
Total energy in the initial position = Total energy in the final position

$$
K E_{o}+P E_{o}=K E_{f}+P E_{f}
$$

Change in potential energy $=P E_{f}-\mathrm{PE}_{\circ}$

$$
\begin{aligned}
& =m \times g \times h_{f}-m \times g \times h_{\circ} \\
& =m \times g\left(h_{f}-h_{o}\right)=\text { work }=-1 / 2 m v_{o}{ }^{2}
\end{aligned}
$$

