
PhET Simulation: Collision Lab.

By: Nada Saab, Ph.D.

Intro

Momentum = m x v

Kinetic energy = $\frac{1}{2}$ m x v^2

Along the x axis: Choose the positive and negative directions.

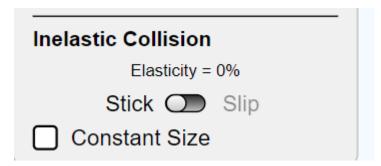
1) Before Collision:

- a) Calculate the momentum of ball A: Make sure to use the + or sign for the velocity. Compare your value to the value on the screen in the simulation.
- b) Calculate the momentum of ball B: Make sure to use the + or sign for the velocity. Compare your value to the value on the screen in the simulation.
 - c) Calculate the total momentum before collision = momentum of ball 1 + momentum of ball 2
 - d) Calculate the total momentum after collision = momentum ball 1 + momentum of ball 2.
 - e) Use the calculations of c and d to prove that the total momentum before collision = total momentum after collision

Note: If you check more data box, you will see the values there.

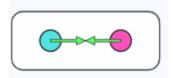
More Data				
Mass (kg)	Mass (kg) Position (m) Velocity (n		n/s) Momentum (kg m/s)	
	X	V_{X}	p_{x}	
0.50	-1.00	1.00	0.50	
2 1.50	1.00	-0.50	-0.75	

f) Use the kinematic equations and the value for time to calculate X for each ball. Compare you calculated value to the value on the screen for PhET.


Kinematic Equations for Motion with Constant Acceleration				
	$v = v_o + at$			
	$x = \frac{1}{2} \left(v_o + v \right) t$			
	$v^2 = v_o^2 + 2ax$			
	$x = v_o t + \frac{1}{2}at^2$			

X	acceleration (m/s ²)	t	Vo =Vi	V = Vf
Displacement		time	initial velocity	Final velocity
(km, m)		(s, h)	(m/s, km/h)	(m/s , km/h)

Part 2: Inelastic Collision


a)

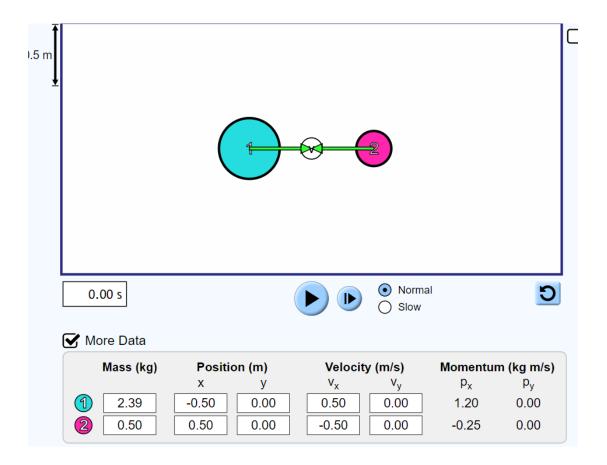
b) For Custom:

Choose

c) Have one ball bigger than the other. Repeat these steps

Momentum = m x v

Kinetic energy = $\frac{1}{2}$ m x v^2


Along the x axis: Choose the positive and negative directions.

2) Before Collision:

- g) Calculate the momentum of ball A: Make sure to use the + or sign for the velocity. Compare your value to the value on the screen in the simulation.
- h) Calculate the momentum of ball B: Make sure to use the + or sign for the velocity. Compare your value to the value on the screen in the simulation.

- i) Calculate the total momentum before collision = momentum of ball 1 + momentum of ball 2
- j) Calculate the total momentum after collision = momentum ball 1 + momentum of ball 2.
- k) Use the calculations of c and d to prove that the total momentum before collision = total momentum after collision

Note: If you check more data box, you will see the values there.

