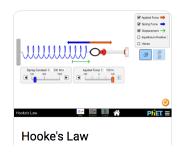
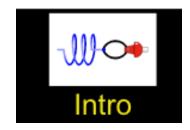
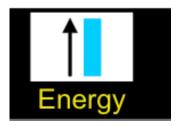
PhET simulation: Hooke's Law

Hooke's Law: The amount of deformation-displacement (extension or compression) of an elastic object (such as spring) is proportional to the forces applied to deform it.


Equation: $\mathbf{F_s} = \mathbf{K} \mathbf{X}$


 $\mathbf{F_s}$ id the forces exerted on the deformed spring, in newtons.


X is the amount of displacement of the spring, in meters

K is the spring constant in newtons per meter.

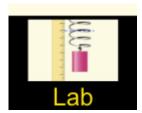
Elastic Potential Energy: U = 1/2 (K X²)

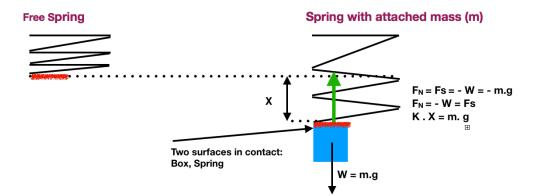
Design an experiment and use the formulas of Hooke's Law and Elastic Potential Energy;

Idea: Calculate the values and prove that the calculated values are those given experimentally by PhET simulation. Use both Hooke's law and the Elastic Potential Energy Formulas.

PhET simulation: Masses and Springs: Basics


Hooke's Law: The amount of deformation-displacement (extension or compression) of an elastic object (such as spring) is proportional to the forces applied to deform it.


Equation: $\mathbf{F_s} = \mathbf{K} \mathbf{X}$


F_s id the forces exerted on the deformed spring, in newtons.

X is the amount of displacement of the spring, in meters

K is the spring constant in newtons per meter.

Design an experiment and use the formulas of Hooke's Law and calculate the mass of one unknown.

Idea: Calculate the values and prove that the calculated values are those given experimentally by PhET simulation. Use both Hooke's law.

Change the Gravity: Use different planets. Write a conclusion