PhET Simulation: Pendulum Lab

Pendulum Lab

© Ruler
 © Stopwatch
 \checkmark Period Trace

The period of a pendulum (T) is the time required for one complete cycle to pass a given point. Period is the seconds/cycle.

Period of a pendulum

$$
\mathrm{T}=2 \pi \sqrt{\frac{\mathrm{~L}}{\mathrm{~g}}}
$$

$T=$ period
$\pi=\mathrm{pi}$
$L=$ pendulum length
$g=$ acceleration due to gravity

LAB.

Part A)

1) Use the stopwatch to experimentally determine the value of the pendulum period (T)
2) Use the formula to calculate the pendulum period.
3) Compare both values (experimental and calculated)

Part B:

1) Predict the effect of changing the pendulum length (L) on the period (T) (increase, decrease, no change). Use the formula of T to help your prediction mathematically.
2) Verify your prediction experimentally using the stopwatch.

Part C:

1) Predict the effect of changing gravitational acceleration (g) on the period (T) (increase, decrease, no change). Use the formula of T to help your prediction mathematically.
2) Verify your prediction experimentally using the stopwatch.

Part D:

1) Predict the effect of changing the pendulum mass (m) on the period (T) (increase, decrease, no change). Use the formula of T to help your prediction mathematically.
2) Verify your prediction experimentally using the stopwatch.

Part E:

1) At what position the potential energy (PE) is maximum? Minimum?
2) At what position the kinetic energy (KE) is maximum? Minimum?
3) Is the total energy the same at every point of the swing? (principle of conservation of energy)
4) Explore the effect of friction on the kinetic energy. Add your observation on the thermal energy.
5) Explore the effect of g on the potential energy
