SAMPLE PROBLEM C

Converting Number of Particles to Mass

Find the mass in grams of 2.44×10^{24} atoms of carbon, whose molar mass is 12.01 g/mol.

1 Gather information.

- number of atoms $C = 2.44 \times 10^{24}$ atoms
- molar mass of carbon = 12.01 g/mol
- amount of C = ? mol
- mass of the sample of carbon = ? g

2 Plan your work.

- Skills Toolkit 3 shows that to convert from number of atoms to mass in grams, you must first convert to amount in moles.
- To find the amount in moles, select the conversion factor that will take you from number of atoms to amount in moles.

$$2.44 \times 10^{24} \text{ atoms } \times ? = ? \text{ mol}$$

• Multiply the number of atoms by the following conversion factor:

$$\frac{1 \text{ mol}}{6.022 \times 10^{23} \text{ atoms}}$$

 To find the mass in grams, select the conversion factor that will take you from amount in moles to mass in grams.

$$? \text{ mol} \times ? = ? g$$

• Multiply the amount in moles by the following conversion factor:

3 Calculate.

Solve and cancel identical units in the numerator and denominator.

$$2.44 \times 10^{24} \text{ atoms} \times \frac{1 \text{ mol}}{6.022 \times 10^{23} \text{ atoms}} \times \frac{12.01 \text{ g C}}{1 \text{ mol}} = 48.7 \text{ g C}$$

4 Verify your result.

The answer has the units requested in the problem.

PRACTICE

Given molar mass, find the mass in grams of each of the following substances:

- 1) 2.11×10^{24} atoms of copper (molar mass of Cu = 63.55 g/mol)
- 2 3.01×10^{23} formula units of NaCl (molar mass of NaCl = 58.44 g/mol)
- 3.990 \times 10²⁵ molecules of CH₄ (molar mass of CH₄ = 16.05 g/mol)
- 4.96 mol titanium (molar mass of Ti = 47.88 g/mol)

Answers to Practice Problems C

- 1. 223 g Cu
- 2. 29.2 g NaCl
- 3. 1063 g CH₄
- 4. 237 g Ti

Homework

GENERAL

Additional Practice Determine the mass in grams of each of the following quantities:

- 6.12 × 10¹⁴ formula units of rhenium dioxide, 218.21 g/mol Ans. 2.22 × 10⁻⁷ g ReO₂
- 2. 5.3 × 10²³ atoms of molybdenum Ans. 84 g Mo
- 3. 1.299 × 10²⁶ ions of nitrite, 46.01 g/mol Ans. 9925 g NO₂