

Force of Earth on book = Weight of the book (\mathbf{W}) = m.g Support force of desk on book = Normal force (F_{N}), perpendicular to surface of contact;

- $\mathrm{F}_{\mathrm{N}}=\mathrm{W}$ (cancel each other)

The sum of the force (net force = F net) : $\mathrm{F}_{\mathrm{N}}+\mathrm{W}=0 \mathrm{~N}$ Equilibrium

Force of Earth on ball = Weight of ball (W)
Support Force of hand on ball = Normal force ($\mathrm{F}_{\mathbf{N}}$), perpendicular to surface of contact;

$$
-\mathrm{F}_{\mathrm{N}}=\mathrm{W} \text { (cancel each other) }
$$

The sum of the force (net force $=F$ net) : $\mathrm{F}_{\mathrm{N}}+\mathrm{W}=0 \mathrm{~N}$
The system is in Equilibrium.

Ball hanging from rope

Force of Earth on ball = Weight of ball (W)
Support Force of rope on ball = Normal / Tension force (F_{N}), perpendicular to surface of contact;

- $\mathrm{F}_{\mathrm{N}}=\mathrm{W}$ (cancel each other)

The sum of the force (net force $=F$ net) : $\mathrm{F}_{\mathrm{N}}+\mathrm{W}=0 \mathrm{~N}$
The system is in Equilibrium.

The normal force is:

1) always opposite direction of the weight and 2) equal the weight and 3) perpendicular to the surface of contact (90° angle)
