Nuclear Magnetic Resonance Imaging (NMR) By: Nada Saab

Nuclear magnetic resonance (NMR) spectroscopy: The absorption of radiofrequency radiation by nuclei and the resulting transition between energy levels.

Resonance in NMR spectroscopy: The absorption of electromagnetic radiation by a precessing nucleus and the resulting flip of its nuclear spin from a lower energy state to a higher energy state.

Signal: A recording in an NMR spectrum of a nuclear magnetic resonance.

Equivalent Hydrogens: Hydrogens that have the same chemical environment.

Signal splitting: Splitting of an NMR signal into a set of peaks by the influence of nonequivalent nuclei on the same of adjacent atom (s).

(n+1) Rule: The ¹H-NMR signal of a hydrogen or a set of equivalent hydrogens is split into (n+1) peaks by a nonequivalent set of n equivalent neighboring hydrogens.

We have **three kinds of information** that can be driven from examination of a ¹H-NMR spectrum:

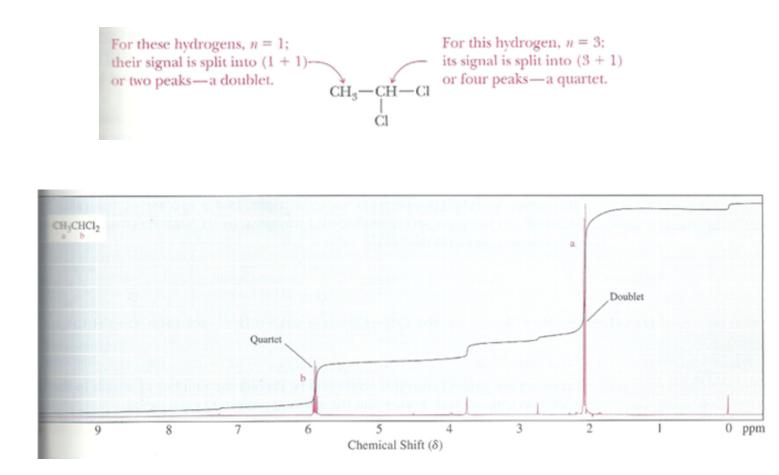
1- From the number of signals, we can determine the number of sets of equivalent hydrogens.

2- From integration of signal areas, we can determine the relative numbers of hydrogens giving rise to earth signal.

3- From the chemical shift of each signal, we drive information about the types of hydrogens in each set.

CHARACTERISTIC ¹H-NMR CHEMICAL SHIFTS

Type of Hydrogen ($\mathbf{R} = \mathbf{a}$ lkyl, $Ar = aryl$)	Chemical Shift $(\delta)^{*}$	Type of Hydrogen (R = alkyl, Ar = aryl)	Chemical Shift $(\delta)^*$
(CH ₃) ₄ Si	0 (by definition)	0	
RCH ₃	0.8 - 1.0	RCOCH3	3.7-3.9
RCH ₂ R	1.2-1.4	O	
R ₃ CH	1.4-1.7	RCOCH ₂ R	4.1-4.7
$R_2C = CRCHR_2$	1.6 - 2.6	RC <mark>H</mark> ₂ I	3.1-3.3
RC≡C <mark>H</mark>	2.0-3.0	RC <mark>H</mark> ₂ Br	3.4-3.6
ArCH ₃	2.2-2.5	RC <mark>H</mark> 2Cl	3.6-3.8
ArCH ₂ R	2.3-2.8	RC <mark>H</mark> ₂ F	4.4-4.5
ROH	0.5-6.0	ArOH	4.5 -4.7
RC <mark>H</mark> ₂OH	3.4-4.0	$R_2C = CH_2$	4.6-5.0
RCH ₂ OR	3.3 - 4.0	$R_2C = CHR$	5.0-5.7
R_2NH	0.5-5.0	Ar <mark>H</mark>	6.5-8.5
RCCH ₃	2.1-2.3	O II RC <mark>H</mark>	9.5-10.1
O ∥ RCC <mark>H</mark> ₂R	2.2-2.6	O II RCO <mark>H</mark>	10-13

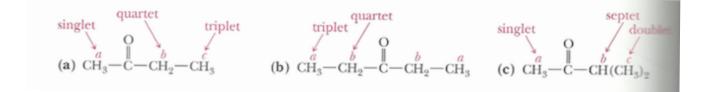

*Values are relative to tetramethylsilane. Other atoms within the molecule may cause the signal to appear outside these ranges.

Exercise A:

Use the rules (signal splitting and (n+1) rule) below and explain with your own words the splitting of the hydrogen in the NMR spectrum:

Signal splitting: Splitting of an NMR signal into a set of peaks by the influence of nonequivalent nuclei on the same of adjacent atom (s).

(n+1) Rule: The ¹H-NMR signal of a hydrogen or a set of equivalent hydrogens is split into (n+1) peaks by a nonequivalent set of n equivalent neighboring hydrogens

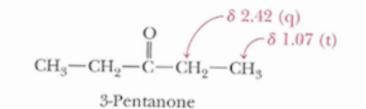


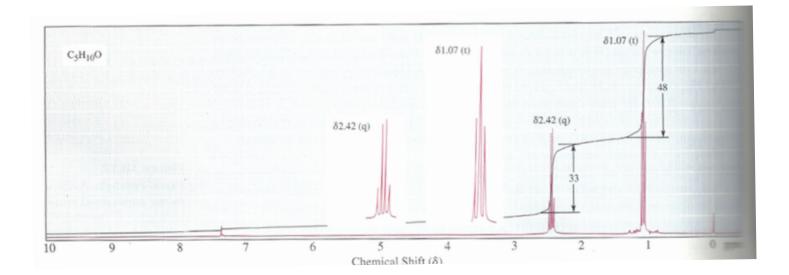
Exercise B:

Use the rules (signal splitting and (n+1) rule) below and explain with your own words the splitting of the hydrogen in the NMR spectrum:

Signal splitting: Splitting of an NMR signal into a set of peaks by the influence of nonequivalent nuclei on the same of adjacent atom (s).

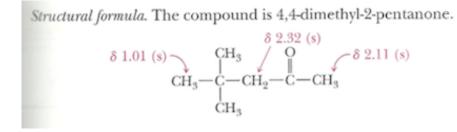
(n+1) Rule: The ¹H-NMR signal of a hydrogen or a set of equivalent hydrogens is split into (n+1) peaks by a nonequivalent set of n equivalent neighboring hydrogens.

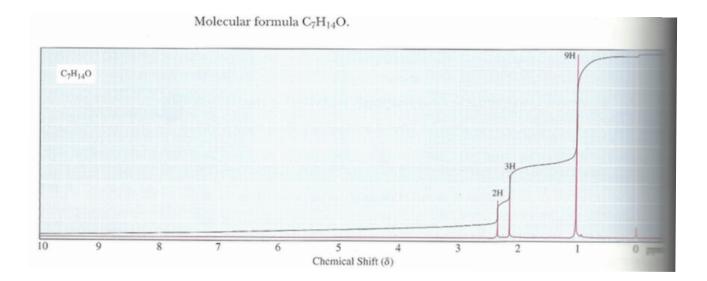



Exercise C:

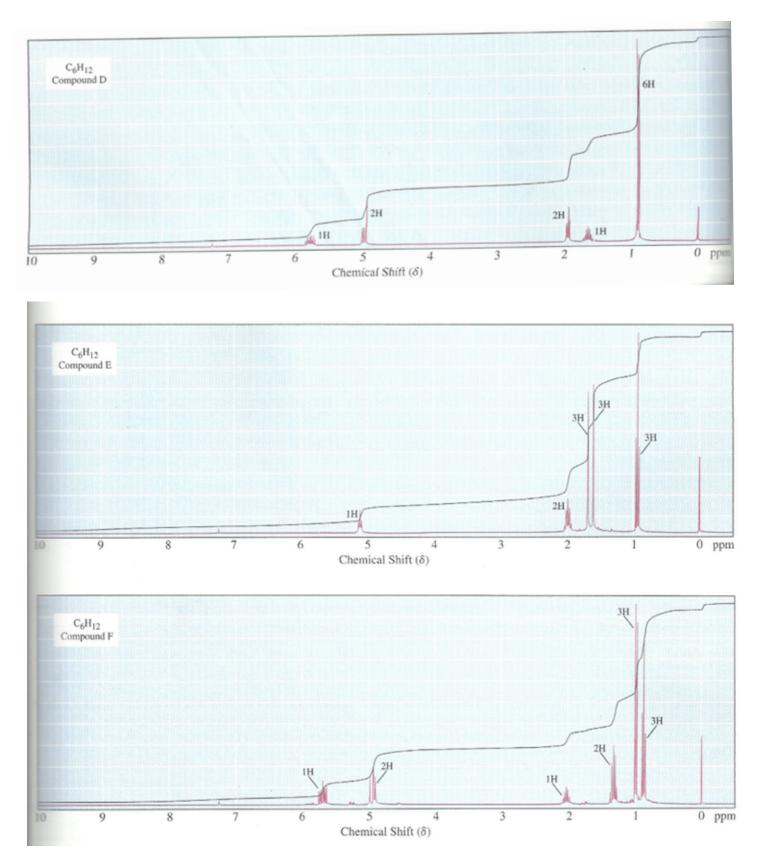
Follow the same rule for Exercises A and B and predict the splitting pattern of each signal of the NMR spectrum of each pair of constitutional isomers (a) and (b).

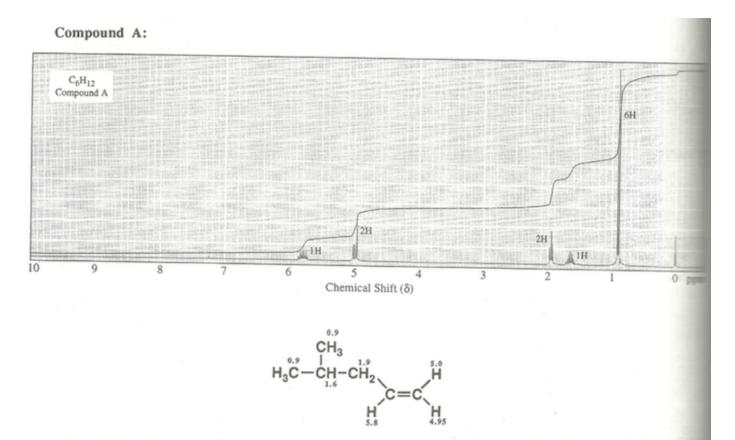
Exercise D:


Use the rules (signal splitting and (n+1) rule) and the table in page 2 " Characteristics of 1H-NMR Chemical Shifts" and explain with your own words and splitting and the location (shift) on each signal for 3-Pentanone.

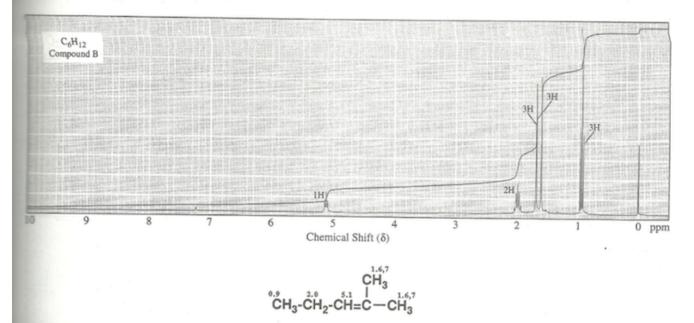


Exercise E:

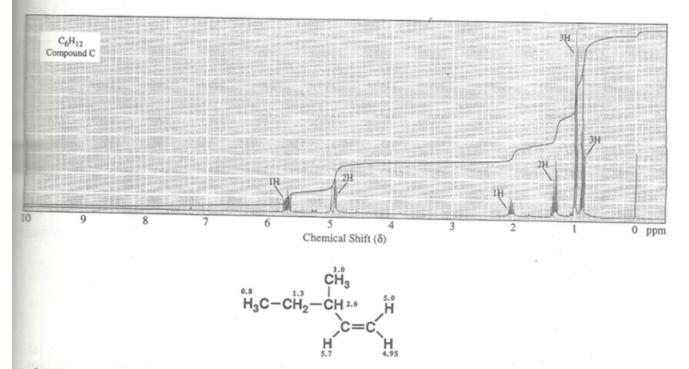

Use the rules (signal splitting and (n+1) rule) and the table in page 2 " Characteristics of 1H-NMR Chemical Shifts" and explain with your own words and splitting and the location (shift) on each signal for 4,4 dimethyl-2-pentanone.

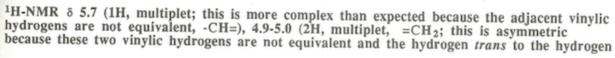

Exercise F:

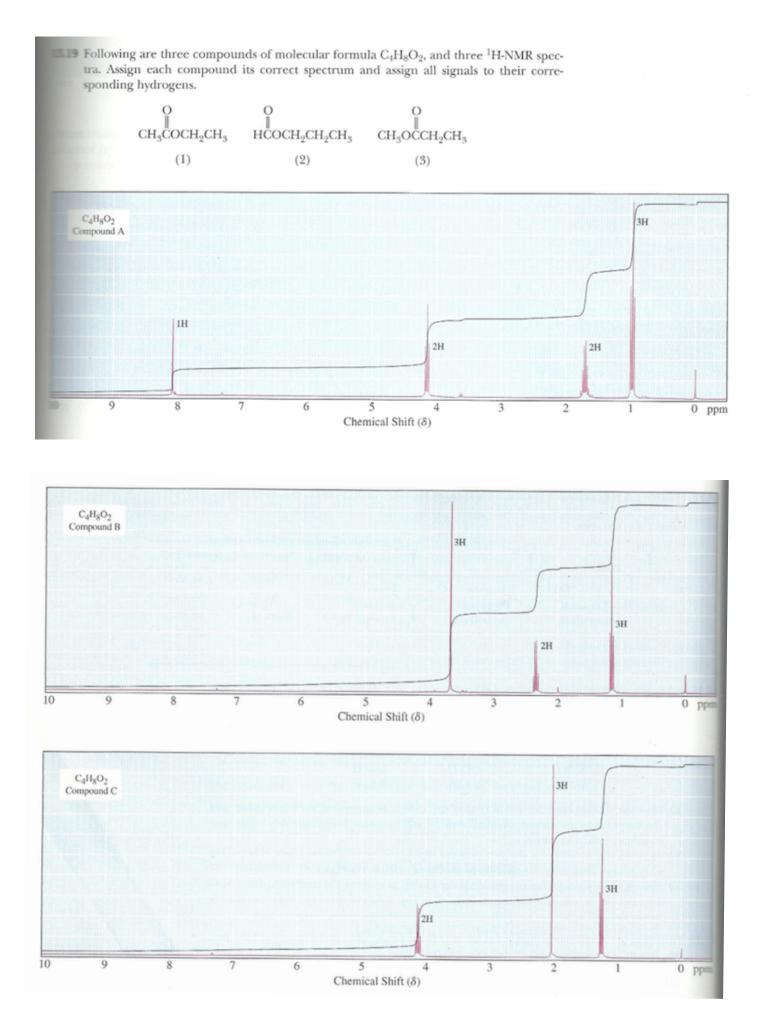
Use the rules (signal splitting and (n+1) rule) and the table in page 2 " Characteristics of 1H-NMR Chemical Shifts" and determine the structure of the following spectrums.


Exercise G:

Study the ¹H-NMR spectrum of each compound A, B and C. Explain the structure and rewrite the solution with your own explanation.


¹H-NMR δ 5.8 (1H, multiplet; this is more complex than expected because the adjacent vinylic hydrogens are not equivalent, -CH=), 4.95-5.0 (2H, multiplet, =CH₂; this is asymmetric because these two vinylic hydrogens are not equivalent and the hydrogen *trans* to the hydrogen on the other vinylogous carbon has the larger signal splitting so it is the signal at 5.0), 1.9 (2H, multiplet; doublet of doublets, -CH₂-), 1.6 (1H, multiplet; a triplet of septets, -CH-), 0.9 (6H, one doublet, -CH₃).





¹H-NMR δ 5.1 (1H, triplet, -CH=), 2.0 (2H, multiplet; a doublet of quartets, -CH₂-), 1.6 and 1.7 (6H, two singlets, =C(CH₃)₂), 0.9 (3H, triplet, -CH₃)

Compound C:

