Newton's second Law of Motion Practice Problems Set 2

Western International High School
Nada Saab

Sample Problem

A skydiver, complete with parachute, has a mass of 70 kg . A short time after the skydiver jumps from the aircraft, the force of air resistance acting on him is 520 N . What is his acceleration at that instant?

$$
\begin{aligned}
& \vec{F}_{g}^{*}=m \vec{g} \\
&=(70 \mathrm{~kg})(-9.8 \mathrm{~N} / \mathrm{kg}) \\
&=-686 \mathrm{~N} \\
& \vec{F}_{\text {net }}=\vec{F}_{\mathrm{g}}+\vec{F}_{\mathrm{f}} \\
&=-686 \mathrm{~N}+520 \mathrm{~N} \\
&=-166 \mathrm{~N} \\
& \vec{a}=\frac{\vec{F}_{\text {net }}}{m} \\
&=\frac{-166 \mathrm{~N}}{72 \mathrm{~kg}} \\
&=-2.3 \mathrm{~m} / \mathrm{s}^{2}, \text { or } 2.3 \mathrm{~m} / \mathrm{s}^{2} \text { [down] } \\
& \text { At the instant specified, the skydiver will have an accele }
\end{aligned}
$$

$2.3 \mathrm{~m} / \mathrm{s}^{2}$ [down].

Practice Problems

1) The net force on a 5.0 kg bowling ball is 20 N . What is its acceleration? Answer: $\quad 4.0 \mathrm{~m} / \mathrm{s}^{2}$

2) A baseball hit by a bat with an average force of 1000 N accelerates at 4.0 x $10^{3} \mathrm{~m} / \mathrm{s}^{2}$. What is the ball's mass? Answer: 0.25 kg

3) What unbalance force is needed to accelerate a 2.0 kg block of wood at 4.0 $\mathrm{m} / \mathrm{s}^{2}$ along a rough table, against a 10 N force of friction? Answer: $7.5 \times 10^{4} \mathrm{~N}$

4) Net Force = mass x acceleration

$$
F_{\text {net }}=m \times a
$$

2) Net Force = (All positive direction forces) - (All negative direction forces) Net force $=$ F push - Friction force
3) An automobile traveling at $20 \mathrm{~m} / \mathrm{s}$ hits a tree. The driver who has a mass of 55 kg comes to rest in 0.10 s after the impact.
a) what is the average force that acts on the driver?
b) What distance does the driver travel after the car firs this the tree.

Answer: (a) $\mathrm{a}=-200 \mathrm{~m} / \mathrm{s}^{2}$, F net $=-11000 \mathrm{~N}$
(b) 1.0 m

Formulas and equations

1) Net Force = mass x acceleration

$$
F_{\text {net }}=m \times a
$$

2) Net Force = (All positive direction forces) - (All negative direction forces)
3) $\mathrm{W}=\mathrm{Fg}=\mathrm{m} \times 9.8$
4)

$f_{\text {kinetic frictional force }}=($ coefficient of kinetic friction $) \mathrm{F}_{\text {Normal }}$

$$
f_{k}=\mu_{k} \times F_{N}
$$

Kinematic Equations for Motion

 with Constant Acceleration$$
\begin{aligned}
& v=v_{o}+a t \\
& x=\frac{1}{2}\left(v_{o}+v\right) t \\
& v^{2}=v_{o}^{2}+2 a x \\
& x=v_{o} t+\frac{1}{2} a t^{2}
\end{aligned}
$$

