Newton's second Law of Motion Practice Problems Set 2

Western International High School
Nada Saab

Sample Problem

A skydiver, complete with parachute, has a mass of 70 kg . A short time after the skydiver jumps from the aircraft, the force of air resistance acting on him is 520 N . What is his acceleration at that instant?

$$
\begin{aligned}
& \vec{F}_{g}^{*}=m \vec{g} \\
&=(70 \mathrm{~kg})(-9.8 \mathrm{~N} / \mathrm{kg}) \\
&=-686 \mathrm{~N} \\
& \vec{F}_{\text {net }}=\vec{F}_{\mathrm{g}}+\vec{F}_{\mathrm{f}} \\
&=-686 \mathrm{~N}+520 \mathrm{~N} \\
&=-166 \mathrm{~N} \\
& \vec{a}=\frac{\vec{F}_{\text {net }}}{m} \\
&=\frac{-166 \mathrm{~N}}{72 \mathrm{~kg}} \\
&=-2.3 \mathrm{~m} / \mathrm{s}^{2}, \text { or } 2.3 \mathrm{~m} / \mathrm{s}^{2} \text { [down] } \\
& \text { At the instant specified, the skydiver will have an accele }
\end{aligned}
$$

$2.3 \mathrm{~m} / \mathrm{s}^{2}$ [down].

Practice Problems

1) The net force on a 5.0 kg bowling ball is 20 N . What is its acceleration? Answer: $\quad 4.0$ m/s ${ }^{2}$

Net force = mass x acceleration
F net $=m \times a$
$20=5.0 \times a$

$$
\begin{aligned}
& \frac{20}{5.0}=\frac{5.0}{5.0} \times \mathrm{a} \\
& \mathrm{a}=4.0 \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
$$

2) A baseball hit by a bat with an average force of 1000 N accelerates at $4.0 \times 10^{3} \mathrm{~m} / \mathrm{s}^{2}$. What is the ball's mass? Answer: 0.25 kg

Net force $=$ mass x acceleration

$$
\begin{gathered}
\text { F net }=m \times a \\
1000=m \times 4000
\end{gathered}
$$

$$
\begin{aligned}
& \frac{1000}{4000}=m \times \frac{4000}{4000} \\
& m=\frac{1000}{4000}=0.25 \mathrm{Kg}
\end{aligned}
$$

3) What unbalance force (F push) is needed to accelerate a 2.0 kg block of wood at $4.0 \mathrm{~m} / \mathrm{s}^{2}$ along a rough table, against a 10 N force of friction?

4) Net Force = mass x acceleration

$$
\begin{gathered}
F_{\text {net }}=m \times a \\
F_{n e t}=2 \times 4=8 N
\end{gathered}
$$

2) Net Force $=($ All positive direction forces) $)-($ All negative direction forces $)$

Net Force $=8 \mathrm{~N}$
Friction force $=10 \mathrm{~N}$
F push = ?

Net force $=$ F push - Friction force

$$
\begin{array}{rl}
8 & =F \text { push }-10 \\
8+10 & =F \text { push }-10+10 \\
18 & N=F \text { push }
\end{array}
$$

4) An automobile traveling at $20 \mathrm{~m} / \mathrm{s}$ hits a tree. The driver who has a mass of 55 kg comes to rest in 0.10 s after the impact.
a) What is the average force that acts on the driver?
b) What distance does the driver travel after the car firs this the tree.
Answer: (a) $\mathrm{a}=-200 \mathrm{~m} / \mathrm{s}^{2}$, F net $=-11000 \mathrm{~N}$
(b) 1.0 m

$m=55 \mathrm{~kg}$

$\mathrm{Vo}=20 \mathrm{~m} / \mathrm{s}$

$$
\begin{array}{ll}
\mathrm{t}=0.1 \mathrm{~s} & \text { rest } \\
& \mathrm{V}=0 \mathrm{~m} / \mathrm{s}
\end{array}
$$

Kinematic Equations for Motion

 with Constant Acceleration$v=v_{o}+a t$
$x=\frac{1}{2}\left(v_{o}+v\right) t$
$v^{2}=v_{o}^{2}+2 a x$
$x=v_{o} t+\frac{1}{2} a t^{2}$

Calculate the acceleration a:

$$
\begin{aligned}
& V o=20 \mathrm{~m} / \mathrm{s} \\
& V=0 \mathrm{~m} / \mathrm{s} \\
& \mathrm{t}=0.1 \mathrm{~s}
\end{aligned}
$$

$$
\begin{gathered}
a=\frac{V-V_{0}}{t} \\
a=\frac{0-20}{0.1}=-200 \mathrm{~m} / \mathrm{s}^{2}
\end{gathered}
$$

Calculate the acceleration with another equation;

$$
\begin{aligned}
V & =V o+a t \\
0 & =20+a(0.1) \\
-20 & =20-20+a(0.1) \\
-20 & =a(0.1) \\
-\frac{20}{0.1} & =a\left(\frac{0.1)}{0.1} \quad a=-200 \mathrm{~m} / \mathrm{s}^{2}\right.
\end{aligned}
$$

2) Net force = mass \times acceleration

$\mathrm{m}=55 \mathrm{~kg}$
$a=-200 \mathrm{~m} / \mathrm{s}^{2}$

$$
\begin{aligned}
\text { F net } & =m \times a \\
& =55 \times a \\
& =55 \times-200 \\
& =-11,000 \mathrm{~N}
\end{aligned}
$$

3) The distance travelled by the driver $(X=?)$
$\mathrm{V}=0 \mathrm{~m} / \mathrm{s}$
$\mathrm{Vo}=20 \mathrm{~m} / \mathrm{s}$
$\mathrm{t}=0.1 \mathrm{~s}$
$a=-200 \mathrm{~m} / \mathrm{s}^{2}$

Kinematic Equations for Motion

 with Constant Acceleration$$
\begin{aligned}
& v=v_{o}+a t \\
& x=\frac{1}{2}\left(v_{o}+v\right) t \\
& v^{2}=v_{o}^{2}+2 a x \\
& x=v_{o} t+\frac{1}{2} a t^{2}
\end{aligned}
$$

$$
\begin{gathered}
X=1 / 2(V o+V) t \\
X=1 / 2(20+0) 0.1 \\
X=1 / 2(20) 0.1
\end{gathered}
$$

$$
X=10 \times 0.1
$$

$$
\mathrm{X}=1 \mathrm{~m}
$$

Formulas and equations

1) Net Force $=$ mass x acceleration

$F_{\text {net }}=m \times a$

2) Net Force = (All positive direction forces) - (All negative direction forces)
3) $\mathrm{W}=\mathrm{Fg}=\mathrm{m} \times 9.8$
4)

$$
f_{\text {kinetic frictional force }}=(\text { coefficient of kinetic friction }) \mathrm{F}_{\text {Normal }}
$$

$$
f_{k}=\mu_{\mathrm{k}} \times \mathrm{F}_{\mathrm{N}}
$$

Kinematic Equations for Motion

 with Constant Acceleration$$
\begin{aligned}
& v=v_{o}+a t \\
& x=\frac{1}{2}\left(v_{o}+v\right) t \\
& v^{2}=v_{o}^{2}+2 a x \\
& x=v_{o} t+\frac{1}{2} a t^{2}
\end{aligned}
$$

