Newton's second Law of Motion

Western International High School

Class Notes

Nada Saab

2 of 12

A boy pushed horizontally on a 10 Kg wagon from rest and it accelerates at 2.5 m/s². If the frictional force is 50 N.

- 1. Calculate the net force acting on the wagon.
- 2. What force must the boy push on the wagon.
- 3. Calculate the weight of the wagon
- 4. What is the value of the normal force?
- 5. Calculate the coefficient of kinetic friction
- 6. Calculate the velocity of the wagon after 10s.
- 7. Calculate the distance traveled by the wagon after 10s.

mass = 10 kg a = 2.5 m/s² Frictional force = 50 N

X = 125 m after 10s

Net force = sum of all forces = (75 - 50) + (98 - 98) = 25 NNet force is driving the wagon to accelerate at 2.5 m/s^{2.} $F_{net} = m x a$

```
= 10 x 2.5 = 25 N
```

```
2) Net Force = (All positive direction forces) - (All negative direction forces)
25 = F push - 50
25 + 50 = F push - 50 + 50
75 = F push
F push = 75 N
```

3) Calculate the weight

$$W = F_g = m x g (g = 9.8 m/s^2, N/kg)$$

 $W = 10 (-9.8) = -98 N$

4) Normal or support force = 98 N

5) Coefficient of kinetic friction: $f_{k} = 50 \text{ N}$, FN = 98 N Calculate the coefficients of kinetic friction (μ_{k}).

 $f_{kinetic frictional force} = (coefficient of kinetic friction) F_{Normal}$

F_N

50 =	μ _k	x 98
------	----------------	------

<u>50</u> =	μ _k	x <u>98</u>
98		98

 $0.51 = \mu_k$

8. Calculate the velocity of the wagon after 10s. (V?)

```
mass = 10 kg

a = 2.5 \text{ m/s}^2

Frictional force = 50 N, Net force = 25 N

Weight = 98 N, Normal force = 98 N

t = 10 \text{ s}

rest , Vo = 0 m/s
```

Kinematic Equations for Motion with Constant Acceleration
$v = v_o + at$
$x = \frac{1}{2} \left(v_o + v \right) t$
$v^2 = v_o^2 + 2ax$
$x = v_o t + \frac{1}{2} a t^2$

$$V = Vo + at$$

 $V = 0 + 2.5 (10)$
 $V = 25 m/s$

9. Calculate the distance traveled by the wagon after 10 s.

2nd equation: X = 1/2 (Vo + V) t = 1/2 (0 + 25)10 = 1/2 (25) 10 = 125 m

4th equation: $X = Vot + 1/2 a t^2 = 0 x 10 + 1/2 (2.5) (10)^2 = 125 m$

3rd equation: $V^2 = Vo^2 + 2 a x$ $25^2 = 0^2 + 5 X$ 625 = 0 + 5 X 625 = 5 X 625 = 5 X 625 = 5 X 5 - 5125 m = X

12 of 12