Newton's second Law of Motion
Western International High School
Class Notes

Nada Saab

A boy pushed horizontally on a 10 Kg wagon from rest and it accelerates at $2.5 \mathrm{~m} / \mathrm{s}^{2}$. If the frictional force is 50 N .

1. Calculate the net force acting on the wagon.
2. What force must the boy push on the wagon.
3. Calculate the weight of the wagon
4. What is the value of the normal force?
5. Calculate the coefficient of kinetic friction
6. Calculate the velocity of the wagon after 10s.
7. Calculate the distance traveled by the wagon after 10 s .
mass $=10 \mathrm{~kg}$
$\mathrm{a}=2.5 \mathrm{~m} / \mathrm{s}^{2}$
Frictional force $=50 \mathrm{~N}$

Positive direction +

Net force $=$ sum of all forces $=(75-50)+(98-98)=25 \mathrm{~N}$ Net force is driving the wagon to accelerate at $2.5 \mathrm{~m} / \mathrm{s}^{2}$.

1) Net Force = mass x acceleration

$$
\begin{gathered}
F_{\text {net }}=m \times a \\
=10 \times 2.5=25 \mathrm{~N}
\end{gathered}
$$

2) Net Force $=$ (All positive direction forces) $-($ All negative direction forces)
$25=F$ push -50
$25+50=F$ push $-50+50$
$75=\mathrm{F}$ push
F push $=75 \mathrm{~N}$
3) Calculate the weight

$$
\begin{gathered}
W=F_{g}=m \times g\left(g=9.8 \mathrm{~m} / \mathrm{s}^{2}, \mathrm{~N} / \mathrm{kg}\right) \\
\mathrm{W}=10(-9.8)=-98 \mathrm{~N}
\end{gathered}
$$

4) Normal or support force $=98 \mathrm{~N}$
5) Coefficient of kinetic friction: $f_{k}=50 \mathrm{~N}, \mathrm{FN}=98 \mathrm{~N}$

Calculate the coefficients of kinetic friction (μ_{k}).

$$
\begin{aligned}
f_{\text {kinetic frictional force }} & =(\text { coefficient of kinetic friction }) F_{\text {Normal }} \\
f_{k} & =\mu_{\mathrm{k}} \times \mathrm{F}_{\mathrm{N}} \\
50 & =\mu_{\mathrm{k}} \times 98 \\
\frac{50}{98} & =\mu_{\mathrm{k}} \times \frac{98}{98}
\end{aligned}
$$

$0.51=\mu_{\mathrm{k}}$
8. Calculate the velocity of the wagon after 10s. (V ?)
mass $=10 \mathrm{~kg}$
$\mathrm{a}=2.5 \mathrm{~m} / \mathrm{s}^{2}$
Frictional force $=50 \mathrm{~N}$, Net force $=25 \mathrm{~N}$
Weight $=98 \mathrm{~N}$, Normal force $=98 \mathrm{~N}$
$\mathrm{t}=10 \mathrm{~s}$
rest , $\mathrm{Vo}=0 \mathrm{~m} / \mathrm{s}$

Kinematic Equations for Motion with Constant Acceleration

$$
\begin{aligned}
& v=v_{o}+a t \\
& x=\frac{1}{2}\left(v_{o}+v\right) t \\
& v^{2}=v_{o}^{2}+2 a x \\
& x=v_{o} t+\frac{1}{2} a t^{2}
\end{aligned}
$$

$$
\begin{gathered}
V=V o+a t \\
V=0+2.5(10) \\
V=25 \mathrm{~m} / \mathrm{s}
\end{gathered}
$$

9. Calculate the distance traveled by the wagon after 10 s .

$$
\begin{gathered}
\begin{array}{c}
\text { Kinematic Equations for Motion } \\
\text { with Constant Acceleration }
\end{array} \\
\hline v=v_{o}+a t \\
x=\frac{1}{2}\left(v_{o}+v\right) t \\
v^{2}=v_{o}^{2}+2 a x \\
x=v_{o} t+\frac{1}{2} a t^{2}
\end{gathered}
$$

2nd equation: $X=1 / 2(V o+V) t=1 / 2(0+25) 10=1 / 2(25) 10=125 \mathrm{~m}$
4th equation: $X=\operatorname{Vot}+1 / 2 \mathrm{at}^{2}=0 \times 10+1 / 2(2.5)(10)^{2}=125 \mathrm{~m}$
3rd equation: $\quad \mathrm{V}^{2}=\mathrm{Vo}^{2}+2 \mathrm{ax}$

$$
25^{2}=0^{2}+5 x
$$

$$
625=0+5 X
$$

$$
625=5 X
$$

$$
\frac{625}{5}=\frac{5}{5} x
$$

$125 \mathrm{~m}=\mathrm{X}$

