Western International High School

Physics Class Notes
Nada Saab, Ph.D.
Semester 2, 2021

Net Force (F net) $=$ All forces in the positive direction - All forces in the negative direction

Individual Forces

Net Force

Opposing force $=560 \mathrm{~N}$

Net Force = (All positive direction forces) - (All negative direction forces)

$=$	$(275+395)$	-	(560)
$=$	670	-	560

$=\quad+110 \mathrm{~N}$

Opposing force is the static frictional force (car is stalled): two surfaces in contact: Rubber (tires) and the concrete.

Direction:
Parallel to the surface of contact.
Opposite to motion

Net Force: How is the mass of the car affect the acceleration of the car?

Net force $=$ Mass x acceleration
Sum of all forces $=$ Mass \mathbf{x} acceleration

$$
\text { Acceleration }=\frac{\text { Net force }}{\text { Mass }}
$$

Force $=$ mass \times acceleration (not very accurate)

(A) has a mass of 900 Kg ;

(B) has a mass of 1850 Kg ;

Which one will accelerate more?

Net Force = mass x acceleration

The red car will accelerate faster

What is the acceleration of the black truck. The weight of the truck is 1850 kg . The net force is 110 N .

$$
\begin{aligned}
& \text { Net Force }=\text { mass } \times \text { acceleration } \\
& \qquad \begin{array}{c}
\text { net }=m \times a \\
110=1850 \times a \\
\frac{110}{1850}=\frac{1850}{1850} \times \mathrm{a} \\
a=0.0059 \mathrm{~m} / \mathrm{s}^{2}
\end{array}
\end{aligned}
$$

What is the acceleration of the red car. The weight of the red car is 900 kg . The net force is $110 \mathbf{N}$.

Net Force = mass x acceleration

$$
\begin{gathered}
F_{\text {net }}=m \times a \\
110=900 \times a \\
\frac{110}{900}=\frac{900}{900} \times a \\
a=0.1222 \mathrm{~m} / \mathrm{s}^{2}
\end{gathered}
$$

Free body diagram:

Net Force = (All positive direction forces) - (All negative direction forces)

$$
=(26) \quad-\quad(11+15)
$$

Net force = 26-11-15 = 0 N

+ Y direction

Free body diagram

Net Force = (All positive direction forces) - (All negative direction forces)

$=$	$(11+4)$	-	$-15)$
$=$	15	-	15

or 11+4-15=0 N(Equilibrium). The box does not move.

1) Determine the net force acting on the object:

+ Y direction

Net Force $=$ (All positive direction forces) - (All negative direction forces) $=6-8=-2$ or $\underline{2 N}$ in the West Direction.

Net force $=2 \mathrm{~N}$
If the box weight 5 Kg . What is the acceleration of the box?
2) Determine the net force acting on the object:

+ Y direction

Net Force $=$ (All positive direction forces) - (All negative direction forces) = 6-8=-2 or 2 N in the south direction (down)

3) Determine the net force acting on the object:

+ Y direction

Free body diagram

X axis: F net $x=5-(3+2)=5-5=0 N$
Y axis: F net $\mathrm{y}=$ 3-4=-1 or 1 N South (down)

4) Determine the net force acting on the object:

+ Y direction

X axis: $\mathrm{F}_{\text {net }}^{\mathrm{x}}=5-(2)=3 \mathrm{~N}$ to the right or east.
Y axis: F net $_{\mathrm{y}}=\mathbf{4 - 4 = 0} \mathbf{N}$

