Western International High School Physics Class Notes

Nada Saab, Ph.D. Semester 2, 2021

Net Force (F net) = All forces in the positive direction - All forces in the negative direction

Individual Forces Net Force 4 N 10 N 6 N = 10 N - 4 N

Opposing force is the static frictional force (car is stalled): two surfaces in contact: Rubber (tires) and the concrete.

Direction:

Parallel to the surface of contact.

Opposite to motion

Net Force: How is the mass of the car affect the acceleration of the car?

Net force = Mass x acceleration

Sum of all forces = Mass x acceleration

Acceleration = Net force
Mass

Force = mass x acceleration (not very accurate)

(A) has a mass of 900 Kg;

(B) has a mass of 1850 Kg;

Which one will accelerate more?

Net Force = mass x acceleration

The red car will accelerate faster

What is the acceleration of the black truck. The weight of the truck is 1850 kg. The net force is 110 N.

Net Force = mass x acceleration

$$F_{net} = m \times a$$

$$110 = 1850 \times a$$

$$a = 0.0059 \text{ m/s}^2$$

What is the acceleration of the red car. The weight of the red car is 900 kg. The net force is 110 N.

Net Force = mass x acceleration

$$F_{net} = m \times a$$

$$110 = 900 \times a$$

$$a = 0.1222 \text{ m/s}^2$$

Free body diagram:

Net Force = (All positive direction forces) - (All negative direction forces)

Net force =
$$26 - 11 - 15 = 0 N$$

+ Y direction

Free body diagram

or 11 + 4 - 15 = 0 N (Equilibrium). The box does not move.

Net Force = (All positive direction forces) - (All negative direction forces) = 6 - 8 = -2 or 2 N in the West Direction.

Net force = 2 N

If the box weight 5 Kg. What is the acceleration of the box?

Net Force = (All positive direction forces) - (All negative direction forces) = 6 - 8 = -2 or 2 N in the south direction (down)

Free body diagram

X axis: F net $_x = 5 - (3 + 2) = 5 - 5 = 0 N$

Y axis: F net y = 3 - 4 = -1 or 1 N South (down)

+ Y direction

X axis: F net x = 5 - (2) = 3 N to the right or east.

Y axis : F net y = 4 - 4 = 0 N

