1) Calculate the momentum of each of the following objects:
a) a 0.5 kg ball thrown upward with a velocity of $30 \mathrm{~m} / \mathrm{s}$.

Momentum $\mathrm{p}=\mathrm{mxv}=0.5 \mathrm{~kg} \times 30 \mathrm{~m} / \mathrm{s}=15 \mathrm{~kg} . \mathrm{m} / \mathrm{s}$ [upwards]
b) a 2000 kg railway car moving south at $10 \mathrm{~m} / \mathrm{s}$

Momentum $=\mathrm{mxv}=2000 \mathrm{~kg} \times 10 \mathrm{~m} / \mathrm{s}=20000 \mathrm{~kg} . \mathrm{m} / \mathrm{s}$ [south]
c) What is the momentum of an electron of mass $9.1 \times 10^{-31} \mathrm{~kg}$ moving at the a velocity of $1.0 \times 10^{7} \mathrm{~m} / \mathrm{s}$

Momentum $=\mathrm{m} \quad \mathrm{X} \quad \mathrm{v}$

$$
\begin{aligned}
& =9.1 \times 10^{-31} \times 1.0 \times 10^{7} \\
& =(9.1 \times 1.0) \times\left(10^{7} \times 10^{-31}\right) \\
& =9.1\left(10^{7-31}\right) \\
& \left.=9.1\left(10^{-24}\right) \mathrm{kg} . \mathrm{m} / \mathrm{s}[\text { forwards }]\right)
\end{aligned}
$$

d) The momentum of the Earth, of mass $6.0 \times 10^{24} \mathrm{~kg}$, moving along its solar orbit with a velocity of $3.0 \times 10^{4} \mathrm{~m} / \mathrm{s}$.

$$
\begin{aligned}
\text { Momentum } & =\mathrm{m} \quad \mathrm{x} \\
& =6.0 \times 10^{24} \times 3.0 \times 10^{4} \\
& =(6.0 \times 3.0) \times\left(10^{4} \times 10^{24}\right) \\
& =18 \times\left(10^{4+24}\right) \\
& =18 \times 10^{28}
\end{aligned}
$$

(Answer: $18 \times 10^{28} \mathrm{~kg} . \mathrm{m} / \mathrm{s}$ [forwards])
2) The momentum of 7.3 kg shot is $22 \mathrm{~kg} . \mathrm{m} / \mathrm{s}$ [forward]. What is its velocity?

$$
\begin{gathered}
\text { Momentum }=\mathrm{m} \quad \mathrm{x} \\
22=7.3 \mathrm{x} \\
\mathrm{~V} \\
\frac{22}{7.3}=\frac{7.3}{7.3} \mathrm{x} \\
\mathrm{v} \\
3.01=\mathrm{v} \\
\mathrm{~V}=3.01 \mathrm{~m} / \mathrm{s} \text { [forwards] }
\end{gathered}
$$

3) A bullet is traveling at $900 \mathrm{~m} / \mathrm{s}$ has a momentum of $4.5 \mathrm{~kg} . \mathrm{m} / \mathrm{s}$. What is its mass?

Momentum $=\mathrm{m} \quad \mathrm{x} \quad \mathrm{v}$

$$
\begin{aligned}
& 4.5=\mathrm{m} \times 900 \\
& \frac{4.5}{900}=\mathrm{m} \times \frac{900}{900} \\
& 0.005 \mathrm{~kg}=\mathrm{m}
\end{aligned}
$$

