Class Notes for Physics Kinetic Energy
 Western International High School 2020-2021

Kinetic Energy (KE): The energy related to motion. Any moving object has a kinetic energy.

$$
\mathrm{KE}=1 / 2 \mathrm{~m} \mathrm{~V}^{2}
$$

$\mathrm{m}=$ mass
V = Velocity, Speed
KE is a state function. It depends on the state.

Example: What is the kinetic energy of a curling stone of mass $\mathrm{m}=6.0 \mathrm{~kg}$ sliding at a speed $V=4.0 \mathrm{~m} / \mathrm{s}$?
Curling stone sliding is a moving object, so it has kinetic energy.

$$
\begin{gathered}
\mathrm{KE}=1 / 2 \mathrm{~m} \mathrm{~V} \mathrm{~V}^{2} \\
=1 / 2 \times 6 \times 4^{2} \\
=48 \mathrm{Joul}
\end{gathered}
$$

Energy (E) is the ability to do work. Work (W) is the transfer of energy.

Difference in kinetic energy = Final kinetic energy - Initial kinetic energy.

$$
\begin{gathered}
\Delta E=K E_{\text {final }}-K E_{\text {initial }} \\
\Delta E_{f}=K E_{f}-K E_{o} \\
\underline{\Delta E}=K E_{f}-K E_{o}=\text { Work }
\end{gathered}
$$

The work done equals the change in kinetic energy

There are two ways to calculate work:
There are two formula for work

1) Work $=$ Force \times displacement $=F x S$
2) Work $=\Delta E=K E_{f}-K E_{\text {o }}$

Work $=1 / 2 \mathrm{mV}^{2} \mathrm{f}-1 / 2 \mathrm{mV}^{2}$ o

1) +2$)$ Work $=F \times S=1 / 2 \mathrm{mV}^{2} \mathrm{f}-1 / 2 \mathrm{mV}^{2}{ }_{o}$

$$
F \times S=1 / 2 m V^{2} f-1 / 2 m V^{2}{ }_{o}
$$

Example 2: Passing a Car;

To pass another car, a compact car of mass $875-\mathrm{kg}$ speeds up from an initial speed of $\mathrm{Vo}=22.0 \mathrm{~m} / \mathrm{s}$ to a final speed of $\mathrm{Vf}=44 \mathrm{~m} / \mathrm{s}$. Use its initial and final energies and calculate how much work was done on the car to increase its speed? The car is a moving object, so it has a kinetic energy:

$\mathrm{m}=875 \mathrm{~kg}, \mathrm{Vo}=22 \mathrm{~m} / \mathrm{s}$
$K E_{o}=1 / 2 \mathrm{~m} \mathrm{~V}^{2}{ }_{\circ}$

$$
\begin{gathered}
\mathrm{m}=875 \mathrm{~kg}, \mathrm{Vf}=44 \mathrm{~m} / \mathrm{s} \\
\mathrm{KE}_{\mathrm{f}}=1 / 2 \mathrm{~m} \mathrm{~V}{ }_{\mathrm{f}}
\end{gathered}
$$

$$
W=\Delta E=K E_{f}-K E_{o}
$$

$$
W=\Delta E=1 / 2 m V^{2}{ }_{f}-1 / 2 m V^{2}{ }_{o}
$$

$$
W=1 / 2(875)(44)^{2}-1 / 2(875)(22)^{2}=635000 \text { Joules }
$$

Example 3：A Gymnast on a Trampoline．
The gymnast of mass m leaves the trampoline at an initial speed Vo and reaches a final speed Vf of zero before falling back down．What is the formula for work？

（a）

（b）

$$
\begin{aligned}
& \mathrm{W}=\Delta \mathrm{E}^{\prime}=\mathrm{KE}_{\mathrm{f}}-\mathrm{KE} \text { 。 } \\
& =1 / 2 m V^{2} f-1 / 2 m V^{2} \text { o } \\
& =1 / 2 \mathrm{~m}^{2}-1 / 2 \mathrm{mV} \mathrm{~V}^{2} \text { 。 } \\
& =0-1 / 2 \mathrm{mV}^{2}{ }_{\mathrm{o}}=-1 / 2 \mathrm{~m} \mathrm{~V}^{2} \text { 。 }
\end{aligned}
$$

The gymnast is losing energy．Work is taken away energy．

A 6200 kg African elephant charges at a
speed of $10 \frac{\mathrm{~m}}{\mathrm{~s}}$.
What is the elephant's kinetic energy?
$\mathrm{m}=6200 \mathrm{~kg}$,

$$
\begin{aligned}
\mathrm{V} & =10 \mathrm{~m} / \mathrm{s} \\
\mathrm{KE} & =1 / 2 \mathrm{~m} \mathrm{~V}^{2}
\end{aligned}
$$

KE?

Plug in the values and solve for KE.

$$
\begin{aligned}
& \mathrm{KE}=1 / 2 \mathrm{~m} \mathrm{~V}{ }^{2} \\
= & 0.5 \times 6200 \times 10^{2} \\
= & 3100 \times 100 \\
= & 310000 \text { Joules }
\end{aligned}
$$

A 30 kg dog runs at a speed of $15 \frac{\mathrm{~m}}{\mathrm{~s}}$.

What is the dog's kinetic energy?

$$
\begin{array}{lll}
\mathrm{m}=30 \mathrm{~kg}, & \mathrm{~V}=15 \mathrm{~m} / \mathrm{s} & \mathrm{KE} ? \\
& \mathrm{KE}=1 / 2 \mathrm{~m} \mathrm{~V}^{2}
\end{array}
$$

Plug in the values and solve for KE.

$$
\begin{aligned}
& \mathrm{KE}=1 / 2 \mathrm{~m} \mathrm{~V} \mathrm{~V}^{2} \\
= & 1 / 2 \times 30 \times 15^{2} \\
= & 0.5 \times 30 \times 225 \\
= & 15 \times 225 \\
= & 3375 \text { Joules }
\end{aligned}
$$

A 2.0 kg guinea pig runs at a speed of $1.0 \frac{\mathrm{~m}}{\mathrm{~s}}$.

What is the guinea pig's kinetic energy?

$$
\begin{array}{ll}
\mathrm{m}=2.0 \mathrm{~kg}, & \mathrm{~V}=1.0 \mathrm{~m} / \mathrm{s} \\
& \mathrm{KE}=1 / 2 \mathrm{~m} \mathrm{~V}
\end{array}
$$

$$
\mathrm{KE} \text { ? }
$$

Plug in the values and solve for KE

$$
\begin{aligned}
& \mathrm{KE}=1 / 2 \mathrm{~m} \mathrm{~V} \mathrm{~V}^{2} \\
&= 1 / 2 \times 2.0 \times 1^{2} \\
&= 1 \times 1 \\
&=1 \text { joules. }
\end{aligned}
$$

A 54 kg pig runs at a speed of $1.0 \frac{\mathrm{~m}}{\mathrm{~s}}$.

What is the pig's kinetic energy?

$$
\begin{array}{ll}
\mathrm{m}=54 \mathrm{~kg}, & \mathrm{~V}=1.0 \mathrm{~m} / \mathrm{s} \\
\mathrm{KE}=1 / 2 \mathrm{~m} \mathrm{~V}
\end{array}
$$

$$
\mathrm{KE} \text { ? }
$$

Plug in the values and solve for KE.

$$
\begin{aligned}
& \mathrm{KE}=1 / 2 \mathrm{~m} \mathrm{~V}^{2} \\
& =1 / 2 \mathrm{~m} \mathrm{~V}^{2} \\
& =0.5 \times 54 \times 1^{2} \\
& =27 \text { Joules }
\end{aligned}
$$

A baboon pushes a 3.1 kg stone with 150 J

 of kinetic energy.
What is the stone's speed?

$$
\begin{gathered}
\mathrm{m}=3.1 \mathrm{~kg}, \quad \mathrm{KE}=150 \text { Joules, } \quad \mathrm{V} ? \\
\mathrm{KE}=1 / 2 \mathrm{~m} \mathrm{~V}^{2}
\end{gathered}
$$

Plug in the values and solve for V .

$$
\begin{gathered}
\mathrm{KE}=1 / 2 \mathrm{~m} \mathrm{~V}^{2} \\
150=1 / 2 \times 3.1 \times \mathrm{V}^{2}
\end{gathered}
$$

$$
\begin{gathered}
150=1.55 \times \mathrm{V}^{2} \\
\frac{150}{1.55}=\frac{1.55}{1.55} \times \mathrm{V}^{2} \\
96.77=\mathrm{V}^{2} \\
\sqrt{ } 96.77=\sqrt{ } \mathrm{V}^{2} \\
9.8 \mathrm{~m} / \mathrm{s}=\mathrm{V}
\end{gathered}
$$

A elephant kicks a 5.0 kg stone with 150 J of kinetic energy.

What is the stone's speed?

$$
\begin{gathered}
\mathrm{m}=5.0 \mathrm{~kg}, \quad \mathrm{KE}=150 \text { Joules, } \quad \mathrm{V} ? \\
\mathrm{KE}=1 / 2 \mathrm{~m} \mathrm{~V}^{2}
\end{gathered}
$$

Plug in the values and solve for V .

$$
\begin{gathered}
\mathrm{KE}=1 / 2 \mathrm{~m} \mathrm{~V}^{2} \\
150=1 / 2 \times 5.0 \times \mathrm{V}^{2} \\
150=0.5 \times 5.0 \times \mathrm{V}^{2}
\end{gathered}
$$

$$
\begin{gathered}
150=2.5 \times \mathrm{V}^{2} \\
\frac{150}{2.5}=\frac{2.5}{2.5} \times \mathrm{V}^{2} \\
60=\mathrm{V}^{2} \\
\sqrt{ } 60=\mathrm{V}^{2}
\end{gathered}
$$

$7.745 \mathrm{~m} / \mathrm{s}=\mathrm{V}$

A cannon launches a 4.0 kg bowling ball with

 50 J of kinetic energy.What is the bowling ball's speed?

$$
\begin{gathered}
\mathrm{m}=4.0 \mathrm{~kg}, \quad \mathrm{KE}=50 \text { Joules, } \quad \mathrm{V} ? \\
\mathrm{KE}=1 / 2 \mathrm{~m} \mathrm{~V}^{2}
\end{gathered}
$$

Plug in the values and solve for V .

$$
\begin{gathered}
\mathrm{KE}=1 / 2 \mathrm{mV}^{2} \\
50=1 / 2 \times 4 \times \mathrm{V}^{2}
\end{gathered}
$$

$$
\begin{gathered}
50=2 \times \mathrm{V}^{2} \\
\frac{50}{2}=\frac{2}{2} \times \mathrm{V}^{2} \\
25=\mathrm{V}^{2} \\
\sqrt{ } 25=\sqrt{ } \mathrm{V}^{2} \\
5 \mathrm{~m} / \mathrm{s}=\mathrm{V}
\end{gathered}
$$

