## Kinematic Equations for Motion with Constant Acceleration (g) along the Y axis (Vertically)

$$
\begin{gathered}
V=V o+g t \\
Y=1 / 2(V o+V) t \\
V^{2}=V o^{2}+2 g Y \\
Y=V o t+1 / 2 g t^{2}
\end{gathered}
$$

These equations are the same of that along the $X$ axis when:
1- replacing $X$ with $Y$ and
2- replacing a with $g\left(-9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$

Along the X axis (Horizontally)
Kinematic Equations for Motion with Constant Acceleration

$$
\begin{aligned}
& v=v_{o}+a t \\
& x=\frac{1}{2}\left(v_{o}+v\right) t \\
& v^{2}=v_{o}^{2}+2 a x \\
& x=v_{o} t+\frac{1}{2} a t^{2}
\end{aligned}
$$

Along the Y axis (Vertically)
Kinematic Equations for Motion with Constant Acceleration (g) along the Y axis (Vertically)

$$
\begin{gathered}
V=V o+g t \\
Y=1 / 2(V o+V) t \\
V^{2}=V o^{2}+2 g Y \\
Y=V o t+1 / 2 g t^{2}
\end{gathered}
$$

We can replace g with $-9.8 \mathrm{~m} / \mathrm{s}^{2}$

Kinematic Equations for Motion with Constant Acceleration (g) along the Y axis (Vertically)

$$
\begin{gathered}
V=V o-9.8 t \\
Y=1 / 2(V o+V) t \\
V^{2}=V o^{2}+2(-9.8) Y \\
V^{2}=V o^{2}-19.6 Y \\
Y=V o t+1 / 2(-9.8) t^{2} \\
Y=V o t-4.9 t^{2}
\end{gathered}
$$

Kinematic Equations for Motion with Constant Acceleration (g) along the Y axis (Vertically)

$$
\begin{gathered}
V=V o-9.8 t \\
Y=1 / 2(V o+V) t \\
V^{2}=V o^{2}-19.6 Y \\
Y=V o t-4.9 t^{2}
\end{gathered}
$$

