Impulse - Momentum Class

Notes and Homework

Nada Saab, Ph.D.

Western International High School
2020-2021

Example 1:

What is the impulse given to a golf ball by a club if they are in contact for 0.005 second, during which time the club exerted an average force of 500 N on the ball?

F = 500 N [forward]

Homework 1, a), b) , c)

Impulse the force have the same direction: Force for a very short period of time.

a) What is the impulse (J) exerted by a force of 25 N[E] on a dynamic cart for 3.2 s ?

$$
\begin{aligned}
\mathrm{F} & =25 \mathrm{~N}[\mathrm{E}] \\
\Delta \mathrm{t} & =3.2 \mathrm{~s}
\end{aligned}
$$

$$
\text { impulse }=\mathrm{J}=\mathrm{F} \times \Delta \mathrm{t}
$$

$$
\mathrm{J}=\mathrm{F} \times \Delta \mathrm{t}
$$

$$
=25 \times 3.2
$$

$$
=80 \mathrm{~N} . \mathrm{S}[\mathrm{E}]
$$

b) What is the impulse exerted when a hockey stick exerting a force of 120 N on a puck during the 0.05 s they are in contact?

$$
\begin{aligned}
& \mathrm{F}=120 \mathrm{~N} \\
& \Delta \mathrm{t}=0.05 \mathrm{~s}
\end{aligned}
$$

$$
\begin{gathered}
\mathrm{J}=\mathrm{F} \times \Delta \mathrm{t} \\
=120 \times 0.05 \\
=6 \mathrm{~N} . \mathrm{s} \text { [Forward] }
\end{gathered}
$$

$\mathrm{F}=120 \mathrm{~N}$ [forward]
c) What is the impulse exerted when the Earth is pulling down
$\left(\mathrm{g}=9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$ on a 12 kg rock during 3.0 s it takes to fall from a cliff?
$\mathrm{m}=12 \mathrm{~kg}$
The Earth is pulling the rock with a gravitational force $\left(\mathrm{F}_{\mathrm{g}}\right)$:
$\mathrm{F}_{\mathrm{g}}=\mathrm{W}=\mathrm{mxg}=12 \times 9.8=117.6 \mathrm{~N}$
$\Delta t=3.0 \mathrm{~S}$

$$
\begin{gathered}
\mathrm{J}=\mathrm{F} \times \Delta \mathrm{t} \\
=117.6 \times 3 \\
=352.8 \mathrm{~N} . \mathrm{S} \text { [down] }
\end{gathered}
$$

$$
\begin{aligned}
& \text { Objects (m) in motion (V) have momentum (p) } \\
& \qquad p=m \times \text { V }
\end{aligned}
$$

Impulse (J) is a force (F) during a short period of time (t)

$$
\mathrm{J}=\mathrm{Fxt}
$$

Impulse related to momentum (Impulse - Momentum Theorem)

($\mathrm{F} x \mathrm{t}$) related to $(\mathrm{m} x \mathrm{~V}$)

Before collision: Ball (m) has a initial velocity (Vo);
Initial Momentum $\mathrm{p}=(\mathrm{mx}$ Vo) (1)

During collision: Force for a short period of time
Impulse $\mathrm{J}=(\mathrm{Fx} \Delta \mathrm{t}) \quad$ (2)

After collision: Ball (m) has a final velocity (Vf);
Final Momentum $\mathrm{p}=(\mathbf{m} \mathbf{x} \mathbf{V})$

$$
\begin{gathered}
1+2=3 \\
(\mathrm{~m} \times V \mathrm{~V})+(\mathrm{Fxt})=(\mathrm{mxVf}) \\
(\mathrm{F} x \mathrm{t})=(\mathrm{mxVf})-(\mathrm{m} \times V \mathrm{~V})
\end{gathered}
$$

Impulse $=$ Final momentum - Initial momentum

Data Table					
F	v_{f}	v_{o}	m	$\Delta \mathrm{t}$	
$?$	$58 \mathrm{~m} / \mathrm{s}$	$-38 \mathrm{~m} / \mathrm{s}$	0.14 kg	$1.6 \times 10^{-3} \mathrm{~s}$	

$(\mathrm{Fx} \boldsymbol{\Delta t})=(\mathrm{mxVf})-(\mathrm{mx} \mathrm{Vo})$
$F \times 0.0016=(0.14 \times 58)-(0.14 \times-38)$
$F \times 0.0016=(8.12)-(-5.32)$

Fx $0.0016=8.12+5.32$
Fx $0.0016=13.44$
$\mathrm{F} \times \underline{0.0016}=\underline{13.44}$ $0.0016 \quad 0.0016$

$$
F=\frac{13.44}{0.0016}
$$

$$
\mathrm{F}=8400 \mathrm{~N}
$$

Homework (3)

A 2.0 kg skateboard is rolling across a smooth flat floor, when a small girl kicks it, causing it to speed up to $4.5 \mathrm{~m} / \mathrm{s}$ in 0.50 s without changing direction. If the average force exerted by the girl on the skateboard in its direction of motion was 6.0 N , with what initial velocity was it moving?

$\mathrm{m}=2.0 \mathrm{~kg}$
momentum
($\mathrm{m} \times \mathrm{Vo}$)
$+$
Impulse
(Fxt)
$=\quad(\mathrm{mxVf})$

$$
\begin{array}{rl}
(2.0 \times \mathrm{Vo})+(6 \times 0.5) & =(4.5 \times 2) \\
(2.0 \times \mathrm{Vo})+3 & =9 \\
(2.0 \times \mathrm{Vo})+3-3 & =9-3 \\
(2.0 \times \mathrm{Vo})+0 & =6 \\
2.0 \times \mathrm{Vo} & =6 \\
\underline{2.0 \times \mathrm{Vo}} & =\underline{6} \\
2.0 & 2.0 \\
\text { Vo } & =3 \mathrm{~m} / \mathrm{s} \text { [forward] }
\end{array}
$$

Homework (4)

What average force will stop a 100 kg car in 1.5 s if the car is moving at $22 \mathrm{~m} / \mathrm{s}$?

$$
\begin{aligned}
& \mathrm{F} \times 1.5=-2200 \\
& \mathrm{~F} \times \underline{1.5}=\frac{-2200}{1.5} \\
& 1.5 \\
& \mathrm{~F}=-1,466.66 \mathrm{~N}=-1500 \mathrm{~N}
\end{aligned}
$$

Homework 2:

A billiard ball of mass 0.2 kg rolls towards the right hand cushion of the billiard table at $2.0 \mathrm{~m} / \mathrm{s}$ and rebounds straight back at $2.0 \mathrm{~m} / \mathrm{s}$
a) What is the change in momentum as a result of hitting the cushion? (Answer: - $0.80 \mathrm{~kg} . \mathrm{m} / \mathrm{s}$ [right])
b) b) What impulse is give to the ball by the cushion? (Answer: $0.80 \mathrm{~kg} . \mathrm{m} / \mathrm{s}$ [left])

Change of momentum $=$ Final momentum - Initial momentum

$$
\begin{aligned}
&=(\mathrm{mx} \mathrm{Vf}) \\
&=(0.2 \mathrm{~kg} \mathrm{x}-2.0)-(\mathrm{m} \mathrm{x} \mathrm{Vo}) \\
&(0.2 \mathrm{~kg} \mathrm{x} \mathrm{2.0})
\end{aligned}
$$

$$
\begin{aligned}
& =(-0.4)-(0.4) \\
& \quad=-0.4-0.4=-0.8 \mathrm{~kg} \mathrm{.m} / \mathrm{s}
\end{aligned}
$$

b) Impulse $\mathrm{J}=$ change in momentum $=0.8 \mathrm{~kg} . \mathrm{m} / \mathrm{s}$ [left]

