A horse running at 4.0 m/s accelerates uniformly to a velocity of 18 m/s in 4.0 s.
 What is its displacement during the 4.0 s time interval?

x	a	t	Vo =Vi	V = Vf
Displacement	acceleration	time	initial velocity	Final velocity
?		4.0 s	4.0 m/s	18 m/s

Kinematic Equations for Motion with Constant Acceleration		
$v = v_o + at$		
$x = \frac{1}{2} \left(v_o + v \right) t$		
$v^2 = v_o^2 + 2ax$		
$x = v_o t + \frac{1}{2}at^2$		

x = 1/2 (Vi + V) t x = 1/2 (4.0 + 18) x 4 x = 1/2 (22) x 4 x = 11 x 4x = 44 m

4.0 seconds passed = t

1) A car acquires a velocity of 32 m/s by accelerating at 4.0 m/s² for 5.0 s. What was its initial velocity?

x	a	t	Vo =Vi	V = Vf
Displacement	acceleration	time	initial velocity	Final velocity
	4.0 m/s ²	5.0 s	?	32 m/s

Kinematic Equations for Motion
with Constant Acceleration

$$v = v_o + at$$

$$x = \frac{1}{2} (v_o + v)t$$

$$v^2 = v_o^2 + 2ax$$

$$x = v_o t + \frac{1}{2} at^2$$

Displacement = X

Vf = Vi + a x t $32 = Vi + 4.0 \times 5$ 32 = Vi + 20-20 - 20

12 m/s = Vi

3) A ball falling from rest is located at 45 m below its starting point 3.0 s later.

Assuming that its acceleration is uniform, what is its value?

x	a	t	Vo =Vi	V = Vf
Displacement	acceleration	time	initial velocity	Final velocity
45 m	? m/s ²	3.0 s	Rest 0 m/s	

Kinematic Equations for Motion with Constant Acceleration			
$v = v_o + at$			
$x = \frac{1}{2} \left(v_o + v \right) t$			
$v^2 = v_o^2 + 2ax$			
$x = v_o t + \frac{1}{2} \alpha t^2$			

3.0 seconds passed = t

$X = Vot + 1/2 a t^2$

$-45 = 0 \times 3 + 1/2 a (3)^2$

-45 = 0 + 1/2 a (9)

-45 = 1/2 a (9)

-45 = 4.5 a