1) A horse running at $4.0 \mathrm{~m} / \mathrm{s}$ accelerates uniformly to a velocity of $18 \mathrm{~m} / \mathrm{s}$ in 4.0 s . What is its displacement during the 4.0 s time interval?

| \mathbf{x} | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Displacement | a
 acceleration | t
 time | Vo =Vi
 initial velocity | $V=V f$
 Final velocity |
| $\boldsymbol{?}$ | | | | |
| | | 4.0 s | $4.0 \mathrm{~m} / \mathrm{s}$ | $18 \mathrm{~m} / \mathrm{s}$ |

Kinematic Equations for Motion with Constant Acceleration

$$
\begin{aligned}
& v=v_{o}+a t \\
& x=\frac{1}{2}\left(v_{o}+v\right) t \\
& v^{2}=v_{o}^{2}+2 a x \\
& x=v_{o} t+\frac{1}{2} a t^{2}
\end{aligned}
$$

$$
\begin{gathered}
x=1 / 2(V i+V) t \\
x=1 / 2(4.0+18) \times 4 \\
x=1 / 2(22) \times 4 \\
x=11 \times 4 \\
x=44 \mathrm{~m}
\end{gathered}
$$

4.0 seconds passed $=$ t

1) A car acquires a velocity of $32 \mathrm{~m} / \mathrm{s}$ by accelerating at $4.0 \mathrm{~m} / \mathrm{s}^{2}$ for 5.0 s . What was its initial velocity?

\mathbf{x}				
Displacement	a acceleration	\mathbf{t} time	Vo =Vi initial velocity	V = Vf Final velocity
	$4.0 \mathrm{~m} / \mathrm{s}^{2}$	5.0 s	$?$	$\mathbf{3 2 ~ m} / \mathrm{s}$

$$
\begin{gathered}
\begin{array}{c}
\text { Kinematic Equations for Motion } \\
\text { with Constant Acceleration }
\end{array} \\
\qquad \begin{array}{c}
v=v_{o}+a t \\
x=\frac{1}{2}\left(v_{o}+v\right) t \\
v^{2}=v_{o}^{2}+2 a x \\
x=v_{o} t+\frac{1}{2} a t^{2}
\end{array}
\end{gathered}
$$

Displacement $=\mathbf{X}$

$$
\begin{aligned}
\mathrm{Vf} & =\mathrm{Vi}+\mathrm{a} \times \mathrm{t} \\
32 & =\mathrm{Vi}+4.0 \times 5
\end{aligned}
$$

$$
\begin{array}{r}
32 \\
-20
\end{array}=V i+20
$$

$12 \mathrm{~m} / \mathrm{s}=\mathrm{Vi}$
3) A ball falling from rest is located at 45 m below its starting point 3.0 s later.

Assuming that its acceleration is uniform, what is its value?

Displacement	a acceleration	$\stackrel{t}{\text { time }}$	$\begin{gathered} \text { Vo }=\mathrm{Vi} \\ \text { initial velocity } \end{gathered}$	$\mathbf{V}=\mathbf{V f}$ Final velocity
45 m	? m/s ${ }^{\mathbf{2}}$	3.0 s	Rest $0 \mathrm{~m} / \mathrm{s}$	

$$
\begin{gathered}
\begin{array}{c}
\text { Kinematic Equations for Motion } \\
\text { with Constant Acceleration }
\end{array} \\
\qquad v=v_{o}+a t \\
x=\frac{1}{2}\left(v_{o}+v\right) t \\
v^{2}=v_{o}^{2}+2 a x \\
x=v_{o} t+\frac{1}{2} a t^{2}
\end{gathered}
$$

3.0 seconds passed $=\mathbf{t}$

$$
X=\operatorname{Vot}+1 / 2 a t^{2}
$$

$$
-45=0 \times 3+1 / 2 a(3)^{2}
$$

$$
-45=0+1 / 2 a(9)
$$

$$
-45=1 / 2 a(9)
$$

$$
-45=4.5 \mathrm{a}
$$

$-\underline{45}=\underline{4.5} \mathrm{a}$
4.54 .5
$-10 \mathrm{~m} / \mathrm{s}^{2}=\mathrm{a}$

