Force	Symbol	Definition	Equation/Formula	Direction	Example
Gravitational illusion It is an effect of space that a mass does.	\vec{F}	It is the force of attraction between 2 objects of nonzero mass and separated by a distance r (between the centers)	Newton's law of universal gravitation $F=G \frac{m_{1} m_{2}}{r^{2}}$ $F=$ force $G=$ gravitational constant $m_{1}=$ mass of object 1 $m_{2}=$ mass of object 2 $r=$ distance between centers of the masses $\mathrm{G}=6.673 \times 10^{-11} \mathrm{Nm}^{2} / \mathrm{kg}^{2}$	It is directed along a line joining the centers of particles.	At rest, on or near the surface of the Earth, the gravitational force equals your Weight $\begin{aligned} \mathrm{W} & =\mathrm{F}_{\mathrm{g}}=\mathrm{m} \times \mathrm{g} \\ & =\mathrm{m} \times 9.8 \end{aligned}$
Normal Support	F_{N}	It is the force pushing two surfaces in contact together.	$F_{N}=-W=-m . g$	1) perpendicular $\left(90^{\circ}\right)$ to the surface of contact 2) opposite direction to the weight and 3) equal weight. 4) W and F_{N} cancel each other. $W+F_{N}=0$	

Force	Symbol	Definition	Equation/Formula	Direction	Example
Tension	F_{T}	Is the force acting on a rope when attached to something (pulled by forces acting from opposite sides)	$\begin{aligned} F_{N} & =F_{T}=-W \\ & =-m . g \end{aligned}$ For Equilibrium.	Away from the mass, in the direction of the rope at the point of attachment.	Ball hanging from rope
Spring	F_{s}	Stress is proportional to strain	$\begin{gathered} F_{s}=K . x \\ F_{s}=F_{N}=-W \\ K . x=m \cdot g \end{gathered}$	Opposite to the Weight. Opposite to the direction of the stretch.	

Force	Symbol	Definition	Equation/Formula	Direction	Example
Static Frictional (Not in motion, rest, no movement)	$\mathrm{f}_{\mathbf{s}}$	Force: 1) between the particles of 2 surfaces in contact, 2) not in motion (rest) attempt to move. 3) Resists the force to move (slide) the object. 4) Object only moves when the applied force $F>$ fs max Chemistry Physics		fs 1) Parallel to the surface of contact 2) Opposite to the direction of sliding.	Object only moves when the applied force (F) exceeds the maximum static frictional force (fs max) F > fs max (c)

Force	Symbol	Definition	Equation/Formula	Direction	Example
Kinetic Frictional Motion, Moving, Sliding,	f_{k}	Force: 1) between the particles of 2 surfaces in contact, 2) in motion (moving, sliding) 3) Resists the force to slide the object.	$f_{k}=($ coefficient of kinetic friction) F_{N} $\begin{aligned} f_{k} & =\mu_{\mathrm{k}} \mathrm{~F}_{\mathrm{N}} \\ f_{k} & =\mu_{\mathrm{k}} \mathrm{~m} . g \end{aligned}$	1) Parallel to the surface of contact 2) Opposite to the direction of sliding.	

Two surfaces in contact \longrightarrow Normal Force, support \qquad Perpendicular to contact

