| Force                                                               | Symbol         | Definition                                                                                                           | Equation/Formula                                                                                                                                                                                                                             | Direction                                                                                                                                                                                                                                     | Example                                                                                                                          |
|---------------------------------------------------------------------|----------------|----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|
| Gravitational  illusion  It is an effect of space that a mass does. | F              | It is the force of attraction between 2 objects of non-zero mass and separated by a distance r (between the centers) | Newton's law of universal gravitation $F=Grac{m_1m_2}{r^2}$ $F=$ force $G=$ gravitational constant $m_1=$ mass of object 1 $m_2=$ mass of object 2 $r=$ distance between centers of the masses $G=6.673	imes 10^{-11}	ext{Nm}^2/	ext{kg}^2$ | It is directed along a line joining the centers of particles.                                                                                                                                                                                 | At rest, on or near the surface of the Earth, the gravitational force equals your  Weight  W = F <sub>g</sub> = m x g  = m x 9.8 |
| Normal Support                                                      | F <sub>N</sub> | It is the force pushing two surfaces in contact together.                                                            | F <sub>N</sub> = - W = - m.g                                                                                                                                                                                                                 | <ol> <li>perpendicular (90°)         to the surface of         contact</li> <li>opposite direction to         the weight and</li> <li>equal weight.</li> <li>W and F<sub>N</sub> cancel each         other.</li> </ol> W + F <sub>N</sub> = 0 | Two surfaces in contacts block, table  Slide: Inclined Plane  W 900                                                              |

| Force   | Symbol | Definition                                                                                                          | Equation/Formula                                                              | Direction                                                                    | Example                                                                                     |
|---------|--------|---------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|
| Tension | FT     | Is the force acting on<br>a rope when attached<br>to something  (pulled by forces<br>acting from opposite<br>sides) | F <sub>N</sub> = F <sub>T</sub> = - W<br>= - m.g<br>For Equilibrium.          | Away from the mass, in the direction of the rope at the point of attachment. | Ball hanging from rope  FN = FT  F Rope on ball  F Earth's mass on ball                     |
| Spring  | Fs     | Stress is proportional to strain                                                                                    | F <sub>s</sub> = K . x<br>F <sub>s</sub> = F <sub>N</sub> = - W<br>K. x = m.g | Opposite to the Weight. Opposite to the direction of the stretch.            | Free Spring With attached mass (m)  X  X  Fig. Fig. VW - m.g  N. X = m. g  W = m.g  W = m.g |

| Force                                                 | Symbol | Definition                                                                                                                                                                                                                         | Equation/Formula                                                                                                                                   | Direction                                                                                                                                                                                                                                                                         | Example                                                                                                                                                       |
|-------------------------------------------------------|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Static Frictional  (Not in motion, rest, no movement) | fs     | Force:  1) between the particles of 2 surfaces in contact,  2) not in motion (rest) attempt to move.  3) Resists the force to move (slide) the object.  4) Object only moves when the applied force F > fs max  Chemistry  Physics | $f_{\rm S} = \left( \begin{array}{ccc} { m coefficient~of~static~} \\ { m friction} \end{array} \right)  F_{ m N}$ $f_{ m S} =                   $ | 1) Parallel to the surface of contact 2) Opposite to the direction of sliding.  Vaxia, vertical up and down direction  Vaxia, vertical up and down direction | Object only moves when the applied force (F) exceeds the maximum static frictional force (fs max)  F > fs max  No movement (a)  When movement just begins (c) |

| Force                 | Symbol         | Definition                                                                            | Equation/Formula                                                       | Direction                                                                      | Example                                                      |
|-----------------------|----------------|---------------------------------------------------------------------------------------|------------------------------------------------------------------------|--------------------------------------------------------------------------------|--------------------------------------------------------------|
| Kinetic<br>Frictional | f <sub>k</sub> | Force:  1) between the particles of 2 surfaces in contact,  2) in motion              | $f_k = (_{\text{coefficient of}} $ kinetic friction $)$ $F_{\text{N}}$ | 1) Parallel to the surface of contact 2) Opposite to the direction of sliding. | **************************************                       |
| Motion,<br>Moving,    |                |                                                                                       | $f_k = \mu_k F_N$                                                      |                                                                                |                                                              |
| Sliding,              |                | <ul><li>(moving, sliding)</li><li>3) Resists the force to slide the object.</li></ul> | $f_k = \mu_k \text{ m.g}$                                              |                                                                                | $\overrightarrow{\mathbf{W}} = m\overrightarrow{\mathbf{g}}$ |









