Assume that the mass of the girl with the sled is 100 kg.

(b) Free-body diagram
for the sled and rider

Assume that the mass of the girl with the sled is 100 kg .
$W=m \times g=100 \times(-9.8)=-980 N$
The normal force $(\mathrm{FN})=\mathbf{- W}=980 \mathrm{~N}$

Kinetic Frictional Force
$f_{k}=\mu_{k} F_{N}=\mu_{k} m g$

μ_{k} is the coefficient of kinetic friction: Steel on ice $=0.05$
$f_{k}=\mu_{\mathrm{k}} \times \mathrm{m} \times \mathrm{g}=0.05 \times 100 \times 9.8=49 \mathrm{~N}=-49$ Newtons

Direction of the frictional force

1- Opposite to motion
2- Parallel to the surface of contact.

To start moving the girl has to push to the front with a force F > 98N

To keep moving, the girl has to push with a force that is more than 49 N.

