The forces along the Y axis (vertical direction) are: $W=F$ gravity and $F_{N \text { support }}$ The forces along the x axis (horizontal direction) are: fs and applied F

Gravitational acceleration
$\mathrm{g}=-9.8 \mathrm{~m} / \mathrm{s}^{2}=-9.8 \mathrm{~N} / \mathrm{kg}$
$\mathrm{g}=-9.8 \mathrm{~m} / \mathrm{s}^{2}=-9.8 \mathrm{~N} / \mathrm{kg}$

static $=$ no motion $=$ rest

static frictional Force (f_{s})

$$
\begin{gathered}
f_{s}=(\text { surface of contact }) \mathrm{F}_{\mathrm{N}} \\
f_{\mathrm{s}}=\left(\text { (coefficient of static friction) } \quad \mathrm{F}_{\mathrm{N}}\right. \\
f_{\mathrm{s}}=\mu_{\mathrm{s}} \mathrm{~F}_{\mathrm{N}} \\
f_{s}=\mu_{\mathrm{s}} \mathrm{~m} . \mathrm{g}
\end{gathered}
$$

(steel on steel)

$$
\begin{gathered}
f_{s}=\mu_{s} F_{N} \\
f_{s}=\mu_{\mathrm{s}} \mathrm{~m} . g \\
f_{s}=0.78 \times 40 \times-9.8 \\
f_{s}=-305 \mathrm{~N}
\end{gathered}
$$

To push this box, I need to push with a force that is more than 305 N

(steel on ice) not in motion

$$
\begin{gathered}
f_{s}=\mu_{s} \mathrm{~F}_{\mathrm{N}} \\
f_{s}=\mu_{\mathrm{s}} \mathrm{~m} . \mathrm{g} \\
f_{s}=0.1 \times 40 \times-9.8 \\
=0.1 \times-392 \\
=-39.2 \mathrm{~N}
\end{gathered}
$$

(steel on ice)

box is sliding = motion $=$ kinetic Kinetic Frictional Force (f_{k})
$f_{k}=$ (coefficient of kinetic friction) F_{N}

$$
\begin{gathered}
f_{k}=\mu_{\mathrm{k}} \mathrm{~F}_{\mathrm{N}} \\
f_{k}=\mu_{\mathrm{k}} \mathrm{~m} . \mathrm{g} \\
f_{k}=0.05 \times 40 \times-9.8 \\
=0.05 \times-392 \\
=-19.6 \text { Newton }
\end{gathered}
$$

The coefficient of sliding (kinetic) friction between two materials is 0.35 . A 5.0 kg object made of one material is being pulled along a table make of another material. What is the kinetic force of friction?
$f_{k}=$ (coefficient of kinetic friction) F_{N}

$$
\begin{aligned}
& f_{k}=\mu_{\mathrm{k}} \mathrm{~F}_{\mathrm{N}} \\
& f_{k}=\mu_{\mathrm{k}} \mathrm{~m} \cdot \mathrm{~g}
\end{aligned}
$$

$f_{k}=0.35 \times 5 \times-9.8=-17.1$ Newton

The driver of a 1500 kg car applies the brakes on a concrete road.
Calculate the force of friction (a) on a dry road and (b) on a wet road. Moving or at standing?
Moving: Kinetic frictional foce.
$f_{k}=$ (coefficient of kinetic friction) F_{N}

$$
\begin{gathered}
f_{k}=\mu_{\mathrm{k}} \mathrm{~F}_{\mathrm{N}} \\
f_{k}=\mu_{\mathrm{k}} \mathrm{~m} \cdot \mathrm{~g} \\
f_{k}=
\end{gathered}
$$

A 70 kg hockey player glides across the ice on steel stakes. What is the force of friction acting on the skater? Answer 34.3 N

Moving $=$ Kinetic
$f_{k}=$ (coefficient of kinetic friction) F_{N}

$$
\begin{gathered}
f_{k}=\mu_{\mathrm{k}} \mathrm{~F}_{\mathrm{N}} \\
f_{k}=\mu_{\mathrm{k}} \mathrm{~m} . \mathrm{g} \\
f_{k}=0.05 \times 70 \times 9.8=34.3 \mathrm{~N}
\end{gathered}
$$

The driver of a 1500 kg car applies the brakes on a concrete road. Calculate the force of friction (a) on a dry road and (b) on a wet road. Answer (a) 11760 N, (b) 7350 N
a) Moving $=$ Kinetic Rubber on dry concrete

$$
\begin{gathered}
f_{k}=\mu_{\mathrm{k}} \cdot \mathrm{~m} \cdot \mathrm{~g} \\
f_{k}=0.8 \times 1500 \times 9.8=11760 \text { Newton }
\end{gathered}
$$

b) wet road.

$$
\begin{gathered}
f_{k}=\mu_{\mathrm{k}} \cdot \mathrm{~m} \cdot \mathrm{~g} \\
f_{k}=0.5 \times 1500 \times 9.8=7350 \text { Newton }
\end{gathered}
$$

The force needed to move the girl:

$F>f s$
 F $>80.95 \mathrm{~N}$

$\mathrm{F}=80.95 \mathrm{~N}$ can I pull? No

