Enthalpy (H)

A substance energy can be measured by Enthalpy.

Enthalpy (*H*) is the **heat transferred** between the system and the surroundings during a chemical reaction carried out under **constant pressure.** Again, we can only measure the change in enthalpy ΔH .

Enthalpy H is the total energy content of a sample at a constant pressure. The heat gained or lost by a substance is:

 $\Delta H = q_p = n C \Delta T = n C (T final - T initial)$

C is molar heat capacity : C; J/mole.K, n : mole , T: Kelvin The units of ΔH kJ/mole

There are four ways to calculate enthalpy (A, B, C, D)

A) Calorimetry

- B) From tables of standards values
- C) Hess's Law
- D) Bond energies

and also stoichiometry.

A) Molar enthalpy change (First Way)

Molar enthalpy change is the enthalpy change for one mole n = 1.

 $\Delta H = C \Delta T = C (T \text{ final - T initial})$

Heating: Endothermic: Absorb heat: $\Delta H > 0$.

T final > T initial so, T final - T initial > 0

 $\Delta H = C \Delta T = C (T \text{ final } - T \text{ initial}) > 0.$

Cooling: Exothermic: Release heat: $\Delta H < 0$.

T final < T initial so, T final - T initial < 0

 $\Delta H = C \Delta T = C (T \text{ final} - T \text{ initial}) < 0.$

When two substance of different temperature are in contact.

Heat gained = Heat lost.

Enthalpy is an extensive property

1) The *magnitude* of enthalpy is directly proportional to the amount of reactant consumed.

Example: If one mole of CH_4 is burned in oxygen to produce CO_2 and water, 890 kJ of heat is released to the surroundings. If two moles of CH_4 are burned then 2x 890 = 1780 kJ of heat is released.

 $\begin{array}{c} CH_4 \left(g \right) + 2 \ O_2 \left(g \right) & \longrightarrow & CO_2 \left(g \right) + 2 \ H_2O \left(I \right) + energy \ \Delta H = -890 \ kJ \\ So: \\ 2 \ CH_4 \left(g \right) + 4 \ O_2 \left(g \right) & \longrightarrow & 2 \ CO_2 \left(g \right) + 2 \ H_2O \left(I \right) + energy \ \Delta H = 2(-890 \ kJ) = 1780 \ kJ \end{array}$

2) The sign of ΔH depends on the direction of the reaction. The enthalpy change for a reaction is equal in magnitude but opposite in sign to ΔH for the reverse reaction. Example:

CH₄ (g) + 2 O₂ (g) CO_2 (g) + 2 H₂O (l) + energy ΔH = -890 kJ So: CO₂ (g) + 2 H₂O (l) + energy CH_4 (g) + 2 O₂ (g) ΔH = + 890 kJ

3) Enthalpy change depends on state:

 $2 H_2O (g)$ $2 H_2O (l)$ $\Delta H = -88 kJ$

B) Hess's Law (Second Way)

Hess's Law: if a reaction is carried out in a series of steps, ΔH for the reaction is the sum of ΔH for each of the steps.

The ΔH is independent of the number of steps and the nature of the path.

Step 1: $CH_4(g) + 2 O_2 \longrightarrow CO_2 + 2 H_2O(g) \quad \Delta H_1 = -802 \text{ kJ}$ Step 2: $2 H_2O(g) \longrightarrow 2 H_2O(1) \qquad \Delta H_2 = -88 \text{ kJ}$

Step 1+2: CH₄ (g) + 2 O₂ \longrightarrow CO₂ (g) + 2 H₂O (l) $\Delta H_{1+2} = -890 \text{ kJ}$

ΔH is sensitive to the states of the reactants and products.

Hess's law allows us to calculate enthalpy data for reactions which are difficult to carry out directly.

C) Using standard enthalpy of formation (Third Way)

Using Enthalpy of Formation to Calculate Enthalpies of Reaction

 $\Delta H_{rxn} = \Sigma n \Delta H_{f}(products) - \Sigma m \Delta H_{f}(reactants)$

Where n and m are the stoichiometric coefficients.

Example:

Calculate the ΔH^{o}_{rxn} for:

 $C_{3}H_{8}(g) + 5 O_{2}(g) \longrightarrow 3 CO_{2}(g) + 4 H_{2}O(l)$

 $\Delta H^{\circ}_{rxn} = 3(-393.5 \text{ kJ}) + 4(-285.8 \text{ kJ}) - 1(-103.85 \text{ kJ}) - 5(0) = -2220 \text{ kJ}.$

TABLE 6.2Standard Enthalpiesof Formation for SeveralCompounds at 25°C			
Compound	$\Delta H_{\rm f}^{\circ}$ (kJ/mol)		
NH ₃ (g)	-46		
$NO_2(g)$	34		
$H_2O(l)$	-286		
$Al_2O_3(s)$	-1676		
$Fe_2O_3(s)$	-826		
$CO_2(g)$	-394		
$CH_3OH(l)$	-239		
$C_8H_{18}(l)$	-269		

Example 2:

The combustion reaction for methanol is

$$2CH_3OH(l) + 3O_2(g) \longrightarrow 2CO_2(g) + 4H_2O(l)$$

Using the standard enthalpies of formation from Table 6.2 and Equation (6.1), we have

$$\Delta H^{\circ}_{\text{reaction}} = 2 \times \Delta H^{\circ}_{\text{f}} \text{ for } \text{CO}_2(g) + 4 \times \Delta H^{\circ}_{\text{f}} \text{ for } \text{H}_2\text{O}(l) - 2 \times \Delta H^{\circ}_{\text{f}} \text{ for } \text{CH}_3\text{OH}(l)$$
$$= 2 \times (-394 \text{ kJ}) + 4 \times (-286 \text{ kJ}) - 2 \times (-239 \text{ kJ})$$
$$= -1454 \text{ kJ}$$

TABLE 6.2 Standard Enthalpies of Formation for Several Compounds at 25°C			
Compound	$\Delta H_{\rm f}^{\circ}$ (kJ/mol)		
$NH_3(g)$	-46		
$NO_2(g)$	34		
$H_2O(l)$	-286		
$Al_2O_3(s)$	-1676		
$Fe_2O_3(s)$	-826		
$CO_2(g)$	-394		
$CH_3OH(l)$	-239		
$C_8H_{18}(l)$	-269		

D) Bond Enthalpies and the Enthalpies of Reactions (Fourth Way)

We can use bond enthalpies to calculate the enthalpy for a chemical reaction. In a chemical reaction bonds need to be broken and then new bonds form. The enthalpy of the reaction is given by:

 ΔH_{rxn} = energy required to break bonds - energy released when bonds form

TABLE 8.4 Average Bond Energies (kJ/mol)							
Single Bonds					Multiple	Bonds	
H—H H—F	432 565	N—H N—N	391 160	I—I I—Cl	149 208	C=C C≡C	614 839
H—Cl H—Br	427 363	N—F N—Cl	272 200	I—Br	175	0=0 C=0*	495 745
H—I	295	N—Br N—O	243 201	S—H S—F	347 327	C≡0 N=0	1072 607
С—Н С—С	413 347	0—Н 0—0	467 146	S—Cl S—Br	253 218	N=N N≡N	418 941
C—N C—O	305 358	0—F 0—Cl	190 203	s—s	266	C≡N C≡N	891 615
C—F	485	0—I	234	Si—Si Si—H	340 393	0	012
C—Br	276	F—F F—Cl	154	Si—C Si—O	360		
c—s	259	F—Br Cl—Cl	235 237 239	51 0	452		
		Cl—Br Br—Br	218 193				

$\Delta H_{\rm rxn} = \Sigma n D$ (bonds broken) - $\Sigma m D$ (bonds formed)

*C==O(CO₂) = 799

Example 1:

Using the bond energies listed in Table 8.4, calculate ΔH for the reaction of methane with chlorine and fluorine to give Freon-12 (CF₂Cl₂).

$$CH_4(g) + 2Cl_2(g) + 2F_2(g) \longrightarrow CF_2Cl_2(g) + 2HF(g) + 2HCl(g)$$

Solution:

Reactant Bonds Broken:

CH ₄ :	4 mol C—H	$4 \text{ mol} \times \frac{413 \text{ kJ}}{\text{mol}} = 1652 \text{ kJ}$
2Cl ₂ :	2 mol Cl—Cl	$2 \text{ mol} \times \frac{239 \text{ kJ}}{\text{mol}} = 478 \text{ kJ}$
2F ₂ :	2 mol F—F	$2 \text{ mol} \times \frac{154 \text{ kJ}}{\text{mol}} = 308 \text{ kJ}$
		m . 1

Total energy required = 2438 kJ

Product Bonds Formed:

CF₂Cl₂: 2 mol C—F $2 \mod \times \frac{485 \text{ kJ}}{\text{mol}} = 970 \text{ kJ}$ and $2 \mod \text{C}$ —Cl $2 \mod \times \frac{339 \text{ kJ}}{\text{mol}} = 3678 \text{ kJ}$ HF: 2 mol H—F $2 \mod \times \frac{565 \text{ kJ}}{\text{mol}} = 1130 \text{ kJ}$ HCl: 2 mol H—Cl $2 \mod \times \frac{427 \text{ kJ}}{\text{mol}} = 3854 \text{ kJ}$ Total energy released = 3632 kJ

We now can calculate ΔH :

 ΔH = energy required to break bonds – energy released when bonds form = 2438 kJ – 3632 kJ = -1194 kJ

Since the sign of the value for the enthalpy change is negative, this means that 1194 kJ of energy is released per mole of CF₂Cl₂ formed.

Example 2:

We illustrate the concept with the reaction between methane, CH₄ and chlorine:

 $CH_4(g) + Cl_2(g) \longrightarrow CH_3Cl(g) + HCl(g)$

In this reaction one C-H bond and one Cl-Cl bond are broken while on C-Cl bond and one H-Cl bond are formed. (values in table 8.4 next page)

So

$$\Delta H_{\rm rxn} = [D({\rm C-H}) + D({\rm Cl-Cl})] - [D({\rm C-Cl}) + D({\rm H-Cl}) = -104 \text{ kJ}.$$

or

$\Delta H_{\rm rxn} = [4D({\rm C-H}) + D({\rm Cl-Cl})] - [3D({\rm C-H}) + D({\rm C-Cl}) + D({\rm H-Cl}) = -104 \text{ kJ}.$

The overall reaction is exothermic which means that the bonds formed are stronger than the bonds broken.

Notes:

The molar heat capacity (C) depends on the number of atoms.

 $\Delta H = q_p = n C \Delta T = n C (T final - T initial)$

For all metals, the molar heat capacity is around 25 J/K.mole, because it is for 1 atom only. Water has three atoms (HO, 1 O and 2 H)). The molar heat capacity for liquid water is: $3 \times 25 = 75$ J/K.mole. This also applies to the molar heat capacity of ionic compounds. The molar heat capacity for AICl₃ is 92 J/ K.mole, which is almost 4 x 25 because AICl₃ has 4 atoms (1 AI and 3 CI)

Table 1 Molar Heat Capacities of Elements and Compounds				
Element	C (J/K•mol)	Compound	C (J/K∙mol)	
Aluminum, Al(s)	24.2	Aluminum chloride, $AlCl_3(s)$	92.0	
Argon, Ar(g)	20.8	Barium chloride, BaCl ₂ (s)	75.1	
Helium, He(g)	20.8	Cesium iodide, CsI(s)	51.8	
Iron, Fe(s)	25.1	Octane, $C_8H_{18}(l)$	254.0	
Mercury, Hg(l)	27.8	Sodium chloride, NaCl(s)	50.5	
Nitrogen, $N_2(g)$	29.1	Water, $H_2O(g)$	36.8	
Silver, Ag(s)	25.3	Water, $H_2O(l)$	75.3	
Tungsten W(s)	24.2	Water, $H_2O(s)$	37.4	

Molar heat capacity (C) is related to specific heat (c_p)

 $\Delta H = q_{p} = n C \Delta T = m c_{p} \Delta T$

M (g/mol) × c_p (J/K•g) = C (J/K•mol) (molar mass)(specific heat) = (molar heat capacity)

Example: water: molar mass18 g/mole

molar mass of water x specific heat of water = molar heat capacity of water

18 x 4.18 = 75.24

Table 1 Some Specific Heats at Room Temperature				
Element	Specific heat (J/g•K)	Element	Specific heat (J/g∙K)	
Aluminum	0.897	Lead	0.129	
Cadmium	0.232	Neon	1.030	
Calcium	0.647	Nickel	0.444	
Carbon (graphite)	0.709	Platinum	0.133	
Chromium	0.449	Silicon	0.705	
Copper	0.385	Silver	0.235	
Gold	0.129	Water	4.18	
Iron	0.449	Zinc	0.388	

Table 1 Molar Heat Capacities of Elements and Compounds				
Element	C (J/K∙mol)	Compound	C (J/K∙mol)	
Aluminum, Al(s)	24.2	Aluminum chloride, $AlCl_3(s)$	92.0	
$\operatorname{Argon}, \operatorname{Ar}(g)$	20.8	Barium chloride, $BaCl_2(s)$	75.1	
Helium, He(g)	20.8	Cesium iodide, CsI(s)	51.8	
Iron, Fe(s)	25.1	Octane, $C_8H_{18}(l)$	254.0	
Mercury, $Hg(l)$	27.8	Sodium chloride, NaCl(s)	50.5	
Nitrogen, $N_2(g)$	29.1	Water, $H_2O(g)$	36.8	
Silver, Ag(s)	25.3	Water, $H_2O(l)$	75.3	
Tungsten W(s)	24.2	Water, $H_2O(s)$	37.4	