Enthalpy (H)

A substance energy can be measured by Enthalpy.
Enthalpy (H) is the heat transferred between the system and the surroundings during a chemical reaction carried out under constant pressure. Again, we can only measure the change in enthalpy ΔH.

Enthalpy H is the total energy content of a sample at a constant pressure. The heat gained or lost by a substance is:

$$
\Delta H=q_{\mathrm{p}}=\mathrm{nC} \Delta \mathrm{~T}=\mathrm{nC}(\mathrm{~T} \text { final }-\mathrm{T} \text { initial })
$$

C is molar heat capacity : C ; $\mathrm{J} /$ mole. K , n : mole,
T: Kelvin
The units of $\Delta H \mathrm{~kJ} / \mathrm{mole}$

There are four ways to calculate enthalpy (A, B, C, D)
A) Calorimetry
B) From tables of standards values
C) Hess's Law
D) Bond energies
and also stoichiometry.

A) Molar enthalpy change (First Way)

Molar enthalpy change is the enthalpy change for one mole $\mathrm{n}=1$.

$$
\Delta H=C \Delta T=C(T \text { final }-T \text { initial })
$$

Heating: Endothermic: Absorb heat: $\Delta \mathrm{H}>0$.

$$
\begin{aligned}
& \mathrm{T} \text { final }>\mathrm{T} \text { initial so, } \mathrm{T} \text { final }-\mathrm{T} \text { initial }>0 \\
& \Delta \mathrm{H}=\mathrm{C} \Delta \mathrm{~T}=\mathrm{C}(\mathrm{~T} \text { final }-\mathrm{T} \text { initial })>0 .
\end{aligned}
$$

Cooling: Exothermic: Release heat: $\Delta \mathrm{H}<0$.

$$
\begin{aligned}
& \mathrm{T} \text { final }<\mathrm{T} \text { initial so, } \mathrm{T} \text { final }-\mathrm{T} \text { initial }<0 \\
& \Delta \mathrm{H}=\mathrm{C} \Delta \mathrm{~T}=\mathrm{C}(\mathrm{~T} \text { final }-\mathrm{T} \text { initial })<0 .
\end{aligned}
$$

When two substance of different temperature are in contact.
Heat gained $=$ Heat lost.

Enthalpy is an extensive property

1) The magnitude of enthalpy is directly proportional to the amount of reactant consumed.

Example: If one mole of CH_{4} is burned in oxygen to produce CO_{2} and water, 890 kJ of heat is released to the surroundings. If two moles of CH_{4} are burned then $2 x 890=1780 \mathrm{~kJ}$ of heat is released.
$\mathrm{CH}_{4}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})+$ energy $\Delta H=-890 \mathrm{~kJ}$
So:
$2 \mathrm{CH}_{4}(\mathrm{~g})+4 \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+$ energy $\Delta H=2(-890 \mathrm{~kJ})=1780 \mathrm{~kJ}$
2) The sign of ΔH depends on the direction of the reaction. The enthalpy change for a reaction is equal in magnitude but opposite in sign to ΔH for the reverse reaction.
Example:
$\mathrm{CH}_{4}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})+$ energy $\Delta H=-890 \mathrm{~kJ}$
So:
$\mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})+$ energy $\longrightarrow \mathrm{CH}_{4}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g}) \Delta H=+890 \mathrm{~kJ}$
3) Enthalpy change depends on state:

$$
2 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \longrightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \quad \Delta H=-88 \mathrm{~kJ}
$$

B) Hess's Law (Second Way)

Hess's Law: if a reaction is carried out in a series of steps, ΔH for the reaction is the sum of ΔH for each of the steps.

The ΔH is independent of the number of steps and the nature of the path.
Step 1: $\mathrm{CH}_{4}(\mathrm{~g})+2 \mathrm{O}_{2} \longrightarrow \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \quad \Delta H_{l}=-802 \mathrm{~kJ}$
Step 2: $2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \longrightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \quad \Delta H_{2}=-88 \mathrm{~kJ}$

Step 1+2: $\mathrm{CH}_{4}(\mathrm{~g})+2 \mathrm{O}_{2} \longrightarrow \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \Delta H_{l+2}=-890 \mathrm{~kJ}$

ΔH is sensitive to the states of the reactants and products.

Hess's law allows us to calculate enthalpy data for reactions which are difficult to carry out directly.

C) Using standard enthalpy of formation (Third Way)

Using Enthalpy of Formation to Calculate Enthalpies of Reaction

$$
\Delta H^{\mathrm{o}_{\mathrm{rxn}}}=\Sigma \mathrm{n} \Delta H^{\mathrm{o}_{\mathrm{f}}} \text { (products) }-\Sigma \mathrm{m} \Delta H^{\mathrm{o}_{\mathrm{f}}} \text { (reactants) }
$$

Where n and m are the stoichiometric coefficients.
Example:
Calculate the $\Delta H^{0_{\mathrm{rxn}}}$ for:

$$
\mathrm{C}_{3} \mathrm{H}_{8}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 3 \mathrm{CO}_{2}(\mathrm{~g})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

$\Delta H^{0_{\mathrm{rxn}}}=3(-393.5 \mathrm{~kJ})+4(-285.8 \mathrm{~kJ})-1(-103.85 \mathrm{~kJ})-5(0)=-2220 \mathrm{~kJ}$.

Compound	$\Delta H_{\text {f }}^{\circ}(\mathrm{kJ} / \mathrm{mol})$
$\mathrm{NH}_{3}(\mathrm{~g})$	-46
$\mathrm{NO}_{2}(\mathrm{~g})$	34
$\mathrm{H}_{2} \mathrm{O}(l)$	-286
$\mathrm{Al}_{2} \mathrm{O}_{3}(\mathrm{~s})$	-1676
$\mathrm{Fe}_{2} \mathrm{O}_{3}(s)$	-826
$\mathrm{CO}_{2}(\mathrm{~g})$	-394
$\mathrm{CH}_{3} \mathrm{OH}(l)$	-239
$\mathrm{C}_{8} \mathrm{H}_{18}($ l $)$	-269

Example 2:

The combustion reaction for methanol is

$$
2 \mathrm{CH}_{3} \mathrm{OH}(l)+3 \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{CO}_{2}(g)+4 \mathrm{H}_{2} \mathrm{O}(l)
$$

Using the standard enthalpies of formation from Table 6.2 and Equation (6.1), we have

$$
\begin{aligned}
\Delta H_{\text {reaction }}^{\circ}= & 2 \times \Delta H_{\mathrm{f}}^{\mathrm{\circ}} \text { for } \mathrm{CO}_{2}(g)+4 \times \Delta H_{\mathrm{f}}^{\mathrm{\circ}} \text { for } \mathrm{H}_{2} \mathrm{O}(l)- \\
& 2 \times \Delta H_{\mathrm{f}}^{\mathrm{\circ}} \text { for } \mathrm{CH}_{3} \mathrm{OH}(l) \\
= & 2 \times(-394 \mathrm{~kJ})+4 \times(-286 \mathrm{~kJ})-2 \times(-239 \mathrm{~kJ}) \\
= & -1454 \mathrm{~kJ}
\end{aligned}
$$

| TABLE 6.2
 of Formation
 Compounds at
 Cor Several |
| :--- | ---: |
| Compound |

D) Bond Enthalpies and the Enthalpies of Reactions (Fourth Way)

We can use bond enthalpies to calculate the enthalpy for a chemical reaction. In a chemical reaction bonds need to be broken and then new bonds form. The enthalpy of the reaction is given by:
$\Delta H_{\mathrm{rxn}}=$ energy required to break bonds - energy released when bonds form

$$
\Delta H_{\mathrm{rxn}}=\Sigma \mathrm{n} D(\text { bonds broken })-\Sigma \mathrm{m} D(\text { bonds formed })
$$

TABLE 8.4 Average Bond Energies ($\mathbf{k J} / \mathrm{mol}$)

Single Bonds							Multiple Bonds
$\mathrm{H}-\mathrm{H}$	432	$\mathrm{~N}-\mathrm{H}$	391	$\mathrm{I}-\mathrm{I}$	149	$\mathrm{C}=\mathrm{C}$	614
$\mathrm{H}-\mathrm{F}$	565	$\mathrm{~N}-\mathrm{N}$	160	$\mathrm{I}-\mathrm{Cl}$	208	$\mathrm{C} \equiv \mathrm{C}$	839
$\mathrm{H}-\mathrm{Cl}$	427	$\mathrm{~N}-\mathrm{F}$	272	$\mathrm{I}-\mathrm{Br}$	175	$\mathrm{O}=\mathrm{O}$	495
$\mathrm{H}-\mathrm{Br}$	363	$\mathrm{~N}-\mathrm{Cl}$	200			$\mathrm{C}=\mathrm{O}^{*}$	745
$\mathrm{H}-\mathrm{I}$	295	$\mathrm{~N}-\mathrm{Br}$	243	$\mathrm{~S}-\mathrm{H}$	347	$\mathrm{C} \equiv \mathrm{O}$	1072
		$\mathrm{~N}-\mathrm{O}$	201	$\mathrm{~S}-\mathrm{F}$	327	$\mathrm{~N}=\mathrm{O}$	607
$\mathrm{C}-\mathrm{H}$	413	$\mathrm{O}-\mathrm{H}$	467	$\mathrm{~S}-\mathrm{Cl}$	253	$\mathrm{~N}=\mathrm{N}$	418
$\mathrm{C}-\mathrm{C}$	347	$\mathrm{O}-\mathrm{O}$	146	$\mathrm{~S}-\mathrm{Br}$	218	$\mathrm{~N}=\mathrm{N}$	941
$\mathrm{C}-\mathrm{N}$	305	$\mathrm{O}-\mathrm{F}$	190	$\mathrm{~S}-\mathrm{S}$	266	$\mathrm{C} \equiv \mathrm{N}$	891
$\mathrm{C}-\mathrm{O}$	358	$\mathrm{O}-\mathrm{Cl}$	203			$\mathrm{C}=\mathrm{N}$	615
$\mathrm{C}-\mathrm{F}$	485	$\mathrm{O}-\mathrm{I}$	234	$\mathrm{Si}-\mathrm{Si}$	340		
$\mathrm{C}-\mathrm{Cl}$	339			$\mathrm{Si}-\mathrm{H}$	393		
$\mathrm{C}-\mathrm{Br}$	276	$\mathrm{~F}-\mathrm{F}$	154	$\mathrm{Si}-\mathrm{C}$	360		
$\mathrm{C}-\mathrm{I}$	240	$\mathrm{~F}-\mathrm{Cl}$	253	$\mathrm{Si}-\mathrm{O}$	452		
$\mathrm{C}-\mathrm{S}$	259	$\mathrm{~F}-\mathrm{Br}$	237				
		$\mathrm{Cl}-\mathrm{Cl}$	239				
		$\mathrm{Cl}-\mathrm{Br}$	218				
	$\mathrm{Br}-\mathrm{Br}$	193					
					$\mathrm{C}=\mathrm{O}\left(\mathrm{CO}_{2}\right)=799$		

Example 1:

Using the bond energies listed in Table 8.4, calculate ΔH for the reaction of methane with chlorine and fluorine to give Freon- $12\left(\mathrm{CF}_{2} \mathrm{Cl}_{2}\right)$.

$$
\mathrm{CH}_{4}(g)+2 \mathrm{Cl}_{2}(g)+2 \mathrm{~F}_{2}(g) \longrightarrow \mathrm{CF}_{2} \mathrm{Cl}_{2}(g)+2 \mathrm{HF}(g)+2 \mathrm{HCl}(g)
$$

Solution:

Reactant Bonds Broken:

$$
\begin{array}{rlrl}
\mathrm{CH}_{4}: & 4 \mathrm{~mol} \mathrm{C}-\mathrm{H} & 4 \mathrm{~mol} \times \frac{413 \mathrm{~kJ}}{\mathrm{~mol}} & =1652 \mathrm{~kJ} \\
2 \mathrm{Cl}_{2}: & 2 \mathrm{~mol} \mathrm{Cl}-\mathrm{Cl} & 2 \mathrm{~mol} \times \frac{239 \mathrm{~kJ}}{\mathrm{~mol}} & =478 \mathrm{~kJ} \\
2 \mathrm{~F}_{2}: & 2 \mathrm{~mol} \mathrm{~F}-\mathrm{F} & 2 \mathrm{~mol} \times \frac{154 \mathrm{~kJ}}{\mathrm{~mol}} & =308 \mathrm{~kJ} \\
& & \text { Total energy required } & =2438 \mathrm{~kJ}
\end{array}
$$

Product Bonds Formed:

$$
\begin{array}{rlr}
\mathrm{CF}_{2} \mathrm{Cl}_{2}: & 2 \mathrm{~mol} \mathrm{C}-\mathrm{F} & 2 \mathrm{~mol} \times \frac{485 \mathrm{~kJ}}{\mathrm{~mol}}
\end{array}=970 \mathrm{~kJ}
$$

We now can calculate ΔH :

$$
\begin{aligned}
\Delta H & =\text { energy required to break bonds }- \text { energy released when bonds form } \\
& =2438 \mathrm{~kJ}-3632 \mathrm{~kJ} \\
& =-1194 \mathrm{~kJ}
\end{aligned}
$$

Since the sign of the value for the enthalpy change is negative, this means that 1194 kJ of energy is released per mole of $\mathrm{CF}_{2} \mathrm{Cl}_{2}$ formed.

Example 2:

We illustrate the concept with the reaction between methane, CH_{4} and chlorine:

$$
\mathrm{CH}_{4}(g)+\mathrm{Cl}_{2}(g) \longrightarrow \mathrm{CH}_{3} \mathrm{Cl}(g)+\mathrm{HCl}(g)
$$

In this reaction one $\mathrm{C}-\mathrm{H}$ bond and one $\mathrm{Cl}-\mathrm{Cl}$ bond are broken while on $\mathrm{C}-\mathrm{Cl}$ bond and one $\mathrm{H}-\mathrm{Cl}$ bond are formed. (values in table 8.4 next page)

So

$$
\begin{gathered}
\Delta H_{\mathrm{rxn}}=[D(\mathrm{C}-\mathrm{H})+D(\mathrm{Cl}-\mathrm{Cl})]-[D(\mathrm{C}-\mathrm{Cl})+D(\mathrm{H}-\mathrm{Cl})=-104 \mathrm{~kJ} . \\
\text { or } \\
\Delta H_{\mathrm{r} \times \mathrm{n}}=[4 D(\mathrm{C}-\mathrm{H})+D(\mathrm{Cl}-\mathrm{Cl})]-[3 D(\mathrm{C}-\mathrm{H})+D(\mathrm{C}-\mathrm{Cl})+D(\mathrm{H}-\mathrm{Cl})=-104 \mathrm{~kJ} .
\end{gathered}
$$

The overall reaction is exothermic which means that the bonds formed are stronger than the bonds broken.

Notes:
The molar heat capacity (C) depends on the number of atoms.

$$
\Delta H=q_{\mathrm{p}}=\mathrm{nC} \Delta \mathrm{~T}=\mathrm{nC}(\mathrm{~T} \text { final }-\mathrm{T} \text { initial })
$$

For all metals, the molar heat capacity is around $25 \mathrm{~J} / \mathrm{K}$.mole, because it is for 1 atom only.
Water has three atoms (HO, 1 O and 2 H)). The molar heat capacity for liquid water is: $3 \times 25=75 \mathrm{~J} / \mathrm{K}$. mole. This also applies to the molar heat capacity of ionic compounds. The molar heat capacity for AlCl_{3} is $92 \mathrm{~J} /$ K.mole, which is almost 4×25 because AlCl_{3} has 4 atoms (1 Al and 3 Cl)

Element	C ($\mathrm{J} / \mathrm{K} \cdot \mathrm{mol}$)	Compound	C ($\mathrm{J} / \mathrm{K} \cdot \mathrm{mol}$)
Aluminum, $\mathrm{Al}(\mathrm{s})$	24.2	Aluminum chloride, $\mathrm{AlCl}_{3}(s)$	92.0
Argon, $\operatorname{Ar}(\mathrm{g})$	20.8	Barium chloride, $\mathrm{BaCl}_{2}(s)$	75.1
Helium, $\mathrm{He}(\mathrm{g})$	20.8	Cesium iodide, $\operatorname{CsI}(s)$	51.8
Iron, $\mathrm{Fe}(s)$	25.1	Octane, $\mathrm{C}_{8} \mathrm{H}_{18}(l)$	254.0
Mercury, $\mathrm{Hg}(l)$	27.8	Sodium chloride, $\mathrm{NaCl}(\mathrm{s})$	50.5
Nitrogen, $\mathrm{N}_{2}(\mathrm{~g})$	29.1	Water, $\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$	36.8
Silver, $\mathrm{Ag}(\mathrm{s})$	25.3	Water, $\mathrm{H}_{2} \mathrm{O}(l)$	75.3
Tungsten $\mathrm{W}(\mathrm{s})$	24.2	Water, $\mathrm{H}_{2} \mathrm{O}(\mathrm{s})$	37.4

Molar heat capacity (C) is related to specific heat $\left(C_{p}\right)$

$$
\begin{aligned}
& \Delta H=q_{\mathrm{p}}=\mathrm{n} \mathrm{C} \Delta \mathrm{~T}=\mathrm{m} \mathrm{c}_{\mathrm{p}} \Delta \mathrm{~T} \\
& M(\mathrm{~g} / \mathrm{mol}) \times c_{p}(\mathrm{~J} / \mathrm{K} \cdot \mathrm{~g})=C(\mathrm{~J} / \mathrm{K} \cdot \mathrm{~mol}) \\
&(\text { molar mass })(\text { specific heat })=(\text { molar heat capacity })
\end{aligned}
$$

Example: water: molar mass $18 \mathrm{~g} / \mathrm{mole}$
molar mass of water x specific heat of water $=$ molar heat capacity of water

$$
18 \times 4.18=75.24
$$

Table 1 Some Specific Heats at Room Temperature
Element Specific heat $(\mathbf{J} / \mathrm{g} \bullet \mathrm{K})$ Element Specific heat $(\mathbf{J} / \mathrm{g} \cdot \mathrm{K})$ Aluminum 0.897 Lead 0.129 Cadmium 0.232 Neon 1.030 Calcium 0.647 Nickel 0.444 Carbon (graphite) 0.709 Platinum 0.133 Chromium 0.449 Silicon 0.705 Copper 0.385 Silver 0.235 Gold 0.129 Water 4.18 Iron 0.449 Zinc 0.388

$|$| Table 1 Molar Heat Capacities of Elements and Compounds | | | |
| :--- | :---: | :--- | :---: |
| Element | $\mathbf{C}(\mathbf{J} / \mathbf{K} \bullet \mathrm{mol})$ | Compound | $\mathbf{C}(\mathbf{J} / \mathrm{K} \bullet \mathrm{mol})$ |
| Aluminum, $\mathrm{Al}(s)$ | 24.2 | Aluminum chloride, $\mathrm{AlCl}_{3}(s)$ | 92.0 |
| $\operatorname{Argon}, \mathrm{Ar}(g)$ | 20.8 | Barium chloride, $\mathrm{BaCl}_{2}(s)$ | 75.1 |
| Helium, $\mathrm{He}(g)$ | 20.8 | Cesium iodide, $\mathrm{CsI}(s)$ | 51.8 |
| Iron, $\mathrm{Fe}(s)$ | 25.1 | Octane, $\mathrm{C}_{8} \mathrm{H}_{18}(l)$ | 254.0 |
| Mercury, $\mathrm{Hg}(l)$ | 27.8 | Sodium chloride, $\mathrm{NaCl}(s)$ | 50.5 |
| Nitrogen, $\mathrm{N}_{2}(g)$ | 29.1 | Water, $\mathrm{H}_{2} \mathrm{O}(g)$ | 36.8 |
| Silver, $\mathrm{Ag}(s)$ | 25.3 | Water, $\mathrm{H}_{2} \mathrm{O}(l)$ | 75.3 |
| Tungsten $\mathrm{W}(s)$ | 24.2 | Water, $\mathrm{H}_{2} \mathrm{O}(s)$ | 37.4 |

