Physics- Western- Saab- 9/21-28

Dimensional Analysis:

Dimensional analysis is a method of calculation utilizing a knowledge of units.

It is an easy way to convert from one unit of measure to another by multiplying be an appropriate conversion factor.

Conversion factors are used to manipulate units. It a fraction in which numerator and denominator are in different units, but equal to the same quantity.

The algebraic value of the conversion factor is always 1 .

If $a=b$, then $a / b=1$ and $b / a=1$
$1 \mathrm{ft}=12 \mathrm{in}$
so, we can write two conversion factors: $1 \mathrm{ft} / 12 \mathrm{in}=1$ and $12 \mathrm{in} / 1 \mathrm{ft}=1$

Given unit $\times \frac{\text { desired unit }}{\text { desired unit }}$ given unit

Dimensional analysis:
It is all about units and canceling out unit.

Given unit $\left(\frac{\text { Desired unit }}{\text { Given unit }}\right)=$ Desired unit

Desired unit
($\frac{}{\text { Given unit }}$) is a know quantity and is called conversion factor, ratio, Given unit

Example 1:

1 dozen = 12 eggs
2 conversion factors ratios, ratio, fraction
1 dozen
12 eggs

12 eggs
1dozen
Example 2:
1 day = 24 hours
Two conversion factors (fractions)?

Example 3:
1 year $=365$ days
Two conversion factors ratios?

Exercise 1: A car has a velocity of $105 \mathrm{~km} / \mathrm{h}[\mathrm{N}]$. What is its displacement if it travels at this velocity for 2.5 h ?

Displacement $=($ Average Velocity $) \times($ Time $)=105 \mathrm{~km} / \mathrm{h}[\mathrm{N}] \times 2.5 \mathrm{~h}=260 \mathrm{~km}[\mathrm{~N}]$
Method 2)

Use Dimensional Analysis to solve the problem
Velocity $=105 \mathrm{~km}[\mathrm{~N}] / 1 \mathrm{~h}$, $105 \mathrm{~km}[\mathrm{~N}]=1 \mathrm{~h}$

What are the two ratios, fraction, factors?

Write the 2 conversion factors ratios, ratio, fraction?

$$
\begin{align*}
& \frac{105 \mathrm{~km}[\mathrm{~N}]}{1 \mathrm{~h}} \\
& \frac{1 \mathrm{~h}}{105 \mathrm{~km}[\mathrm{~N}]} \tag{1}
\end{align*}
$$

Dimensional Analysis formula: (Pay attention to the units)
Given unit $\mathbf{x} \frac{\text { Desired unit }}{\text { Given-unit }}=\underline{\text { Desired unit }}$
$2.5 \mathrm{~h} \times$ (1) or (2) $=\mathrm{km}[\mathrm{N}]$
Fraction (1): $\frac{105 \mathrm{~km}[\mathrm{~N}]}{1 \mathrm{~h}}{ }^{(1)}$
$2.5 \mathrm{~h}-\times \frac{105 \mathrm{~km}[\mathrm{~N}]}{1 \mathrm{~h}}=260 \mathrm{~km}[\mathrm{~N}]$
$\mathrm{h}-\mathrm{x} \frac{\mathbf{k m}[\mathrm{N}]}{\mathrm{h}}=\mathbf{k m}[\mathrm{N}] \quad$ Correct

Fraction (2): Incorrect choice

$$
\frac{1 \mathrm{~h}}{105 \mathrm{~km}[\mathrm{~N}]}
$$

(2)

Given unit $\mathbf{x} \frac{\text { Desired unit }}{\text { Given unit }}=\underline{\text { Desired unit }}$

Exercise 2: How long would it take a dolphin swimming a $8.0 \mathrm{~m} / \mathrm{s}[\mathrm{E}]$ to travel $208 \mathrm{~m}[\mathrm{E}]$? solve using dimensional analysis

Jesus Esquivel 11:06 AM

- $208 \mathrm{~m}(\mathrm{E}) / 8.0 \mathrm{~m} / \mathrm{s}(\mathrm{E})=26 \mathrm{~s}$

Dimensional Analysis:

Velocity $=8.0 \mathrm{~m}[\mathrm{E}] / 1 \mathrm{~s}$
$8.0 \mathrm{~m}[\mathrm{E}]=1 \mathrm{~s}$
Write the two ratios for velocity;
$8 \mathrm{~m}[\mathrm{E}]=1 \mathrm{~s}$
write the two ratios for velocity;

$$
8 \mathrm{~m}[\mathrm{E}]
$$

$\overline{1 \mathrm{~s}}$
(1)

1 s

$$
\begin{equation*}
\overline{8 \mathrm{~m}}[\mathrm{E}] \tag{2}
\end{equation*}
$$

$208 \mathrm{~m}[\mathrm{E}] \times(1)$ or $(2) ?=\mathrm{s}$

Given-unit \times Desired unit $=$ Desired unit (the unit that you need)
Given unit
$208 \mathrm{~m}[\mathrm{E}] \times \frac{1 \mathrm{~S}}{8 \mathrm{~m}[\mathrm{E}]}=208 / 8=26 \mathrm{~s}$

Exercise 3: Use dimensional analysis to answer the following question:
How many days are in 6 years?
year $-------\rightarrow$ days
1 year $=365$ days
$\begin{aligned} & \frac{1 \text { year }}{365 \text { days }} \quad \text { (1) } \\ & 6 \text { years (from) } x \quad \frac{365 \text { days }}{1 \text { year }} \\ & 1 \text { year (from) }\end{aligned}$

Desired unit
Given-unit x \qquad $=$ Desired unit (the unit that you need)

Given unit

Exercise 4: Use dimensional analysis to answer the following question:
How many eggs are in 12 dozens?

12 eggs = 1 dozen
12 eggs
12 dozens $X \ldots=12 \times 12=144$ eggs

How many dozens make 120 eggs?

120 eggs $\times \xrightarrow{1 \text { dozen }}=120 \times 1 / 12=120 / 12=10$ dozens
12 eggs

Exercise 5: Use dimensional analysis to answer the following question:
How many minutes are in 12 hours?

How many hours are in 1440 minutes?
1440 minutes $X \underset{60 \text { mour }}{60 \text { minutes }}=1440 / 60=24$ hours

