Conservation of Energy

Nada Saab, Ph.D.
Western International High School
2020-2021

$\mathrm{E}=\mathrm{PE}+\mathrm{KE}=10 \mathrm{~J}$
 $$
5+5=10
$$
 W

$$
6+4=10 \quad(\mathrm{KE} \text { is converted to } \mathrm{PE})
$$

$$
\begin{gathered}
E=\begin{array}{c}
P E
\end{array}+K E=10 J \\
5+5=10 \\
\\
\end{gathered}
$$

$$
3+7=10 \text { (PE is converted to KE) }
$$

Any object at a certain height (h) has a potential energy (PE). It does not matter if it is moving or not.

$\mathbf{P E}=\mathbf{m} \mathbf{x} \mathbf{g x}$

Any object moving at a speed V has a kinetic energy (KE). It does not matter how height or low it is.

$$
K E=1 / 2 \mathrm{~m} \mathrm{~V}{ }^{2}
$$

Principle of conservation of energy:

Energy can neither be created nor destroyed, but can only be converted from one form to another.

$$
E=K E+P E=\text { constant }
$$

KE can converted to PE. PE can be converted to KE.

$$
\mathrm{PE}_{f}=m \times g \times h_{f} \quad K E_{f}=1 / 2 m V_{f}{ }^{2}=0
$$

$$
\text { total } E_{t}=K_{f}+P E_{f}
$$

$$
P E_{o}=m \times g \times h_{0}
$$

$$
K E_{o}=1 / 2 \mathrm{mV}^{2}{ }^{2}
$$

$$
\text { total } E_{t}=K E_{o}+P E_{o}
$$

The total mechanical energy of an object remains constant
Total energy in the initial position $=$ Total energy in the final position

$$
K E_{o}+P E_{o}=K E_{f}+P E_{f}
$$

$$
K E_{o}=1 / 2 \mathrm{~m} \mathrm{~V}_{0}{ }^{2}=0 \mathrm{~J}
$$

Point (o):

$$
\begin{aligned}
& \mathrm{V}=0 \mathrm{~m} / \mathrm{s}, \\
& \mathrm{~h}_{0} \\
& \\
& \mathrm{XE} E_{o}=1 / 2 \mathrm{mV} \mathrm{~V}^{2}=1 / 2 \mathrm{~m} \times \mathrm{g} \times \mathrm{h}_{\circ}
\end{aligned}
$$

$$
\mathrm{E}=\mathrm{KE} \mathrm{E}_{\circ}+\mathrm{PE} \mathrm{E}_{\circ}=0+\mathrm{PE} \mathrm{E}_{\circ}=\mathrm{PE} \mathrm{E}_{\circ}
$$

Position (1) : 200 J of PE is converted to KE ;
Total E is the same: 600.000 Joules.

Position (2) : PE is converted to KE; Total E is the same: 600.000 Joules.

It is at the surface of the Earth. So, PE = 0 Joules
It is still moving. So there is KE.

Position (o):

$\mathrm{KE}=0$ Joules because $\mathrm{Vo}=0 \mathrm{~m} / \mathrm{s}$
PE $=600000$ Joules
Mass of sled and people: $\mathrm{m}=300 \mathrm{~kg}$.
$\mathrm{g}=9.81 \mathrm{~m} / \mathrm{s}^{2}$
How high the sled is above the surface of earth: ho?

$$
P E_{o}=m \times g \times h_{\circ}
$$

$$
600000=300 \times 9.81 \times h_{\circ}
$$

$600000=2,943 \times h_{\circ}$

$$
\frac{600000}{2,943}=\frac{2,943}{2,943} \times h_{0}
$$

$205 \mathrm{~m}=\mathrm{h}_{\mathrm{o}}$

Position (1):
$\mathrm{KE}=200000$ Joules, $\mathrm{V}_{1}=$?
$\mathrm{PE}=400000$ Joules , $\mathrm{h}_{1}=$?
Mass of sled and people: $\mathrm{m}=300 \mathrm{~kg}$.

$$
K E=1 / 2 \mathrm{~m} \mathrm{~V}^{2}
$$

$200000=1 / 2 \times 300 \times V^{2}$

$$
200000=150 V^{2}
$$

$\frac{200000}{150}=\frac{150}{150} \mathrm{~V}^{2}$

$1,333.33=V^{2}$
$\sqrt{ } 1,333.33=\sqrt{ }{ }^{2}{ }^{2}$
$36.51 \mathrm{~m} / \mathrm{s}=\mathrm{V}$
$36.51 \mathrm{~m} / \mathrm{s}=\mathrm{V}_{1}$
$P E=400000$ Joules, $m=300 \mathrm{~kg}, \quad \mathrm{~g}=9.81 \mathrm{~m} / \mathrm{s}^{2}$ $\mathrm{h}_{1}=$?

$\mathbf{P E}=\mathbf{m} \mathbf{x} \mathbf{g} \mathbf{x} \mathbf{h}_{1}$

$$
400000=300 \times 9.81 \times h_{1}
$$

$400000=2,943 \times h_{1}$
$\underline{400000}=\underline{2,943} \times h_{1}$
2,943 2,943
$135.91 \mathrm{~m}=\mathrm{h}_{1}$

Position (2):

$\mathrm{KE}=400000$ Joules, $\mathrm{V}_{2}=$?
$\mathrm{PE}=200000$ Joules , $\mathrm{h}_{2}=$?
Mass of sled and people: $\mathrm{m}=300 \mathrm{~kg}$.
$\mathrm{g}=9.81 \mathrm{~m} / \mathrm{s}^{2}$

$$
K E=1 / 2 \mathrm{~m} \mathrm{~V} 2
$$

$$
\begin{gathered}
400000=1 / 2 \times 300 \mathrm{~V}^{2} \\
400000=150 \mathrm{~V}^{2}
\end{gathered}
$$

$\underline{400000}=\underline{150} \mathrm{~V}^{2}$ 150150

$2,666.66=V^{2}$
$\sqrt{ } 2,666.66=\sqrt{ }{ }^{2}{ }^{2}$
$51.63 \mathrm{~m} / \mathrm{s}=\mathrm{V}$
$51.63 \mathrm{~m} / \mathrm{s}=\mathrm{V}_{2}$

$P E=200000$ Joules, $m=300 \mathrm{~kg}, \quad \mathrm{~g}=9.81 \mathrm{~m} / \mathrm{s}^{2}$ $\mathrm{h}_{2}=$?

 $P E=m \times g x h_{2}$

 $P E=m \times g x h_{2}$}

$$
200000=300 \times 9.81 \times h_{2}
$$

$$
200000=2,943 \times h_{2}
$$

$$
\underline{200000}=\underline{2,943} \times \mathrm{h}_{2}
$$

$$
2,943 \quad 2,943
$$

$$
67.9 \mathrm{~m}=\mathrm{h}_{2}
$$

Position (3):

$\mathrm{KE}=\mathbf{6 0 0 0 0 0}$ Joules, $\mathrm{V}_{\mathbf{3}}=$?
PE $=0$ Joules , $\mathrm{h}_{3}=0$
Mass of sled and people: $\mathbf{m}=\mathbf{3 0 0} \mathrm{kg}$.

$$
K E=1 / 2 \mathrm{~m} \mathrm{~V}{ }^{2}
$$

$$
600000=1 / 2 \times 300 \mathrm{~V}^{2}
$$

$600000=150 \mathrm{~V}^{2}$

$\frac{600000}{150}=\frac{150}{150} \mathrm{~V}^{2}$

$4000=V^{2}$

$$
\sqrt{ } 4000=\sqrt{ } V^{2}
$$

$63.24 \mathrm{~m} / \mathrm{s}=\mathrm{V}$
$63.24 \mathrm{~m} / \mathrm{s}=\mathrm{V}_{3}$

