

Acceleration $(\mathrm{a})=$ Change in velocity/Elapsed time $=$ Final velocity - Initial velocity/final time - initial time.

Acceleration $=400 \mathrm{~m} / \mathrm{s}-100 \mathrm{~m} / \mathrm{s} / 10 \mathrm{~s}=300 \mathrm{~m} / \mathrm{s} / 10 \mathrm{~s}=30 \mathrm{~m} / \mathrm{s}^{2}$

$$
\frac{\mathrm{m}}{\mathrm{~S}}: \mathrm{S}=\frac{\mathrm{m}}{\mathrm{~S}^{2}}
$$

$\underline{m} \times S=\underline{m}$
 S

(b)

1) A car accelerates at a constant rate from $40 \mathrm{~km} / \mathrm{h}[E]$ to $90 \mathrm{~km} / \mathrm{h}[E]$ in 5.0 s . What is its acceleration?

Initial velocity $($ from $)=40 \mathrm{~km} / \mathrm{h}[\mathrm{E}]$
Final velocity (to) $=90 \mathrm{~km} / \mathrm{h}[\mathrm{E}]$
time $=5.0 \mathrm{~s}$
Acceleration $=$ final velocity - initial velocity $/$ time $=\mathbf{9 0} \mathbf{k m} / \mathrm{h}-\mathbf{4 0} \mathrm{km} / \mathrm{h} / 5.0 \mathrm{~s}=10 \mathrm{~km} / \mathrm{h} / \mathrm{s}[\mathrm{E}]$
2) A cyclist accelerate from $5.0 \mathrm{~m} / \mathrm{s}$ [S] to $15 \mathrm{~m} / \mathrm{s}$ [S] in 4.0 s . What is his acceleration?

Initial velocity (from) $=\mathbf{5 . 0} \mathbf{~ m} / \mathrm{s}$ [S]
Final velocity (to) $\mathbf{= 1 5} \mathbf{~ m} / \mathrm{s}[\mathrm{S}]$
time $=4.0 \mathrm{~s}$
Acceleration = final velocity - initial velocity $/$ time $=\mathbf{1 5} \mathbf{m} / \mathrm{s} \mathbf{- 5} \mathbf{~ m} / \mathrm{s} / 4 \mathrm{~s}$ $=10 \mathrm{~m} / \mathrm{s} / \mathbf{4} \mathrm{s}=\mathbf{2 . 5} \mathbf{~ m} / \mathrm{s}^{2}$
3) A jet plane accelerates from rest to $750 \mathrm{~km} / \mathrm{h}$ in 2.2 min . What is is average acceleration?

Initial velocity $($ from $)=$ Rest $0 \mathrm{~km} / \mathrm{h}$
final velocity (to) $=750 \mathrm{~km} / \mathrm{h}$ time $=2.2 \mathrm{~min}$.

Acceleration $=$ final velocity $\boldsymbol{-}$ initial velocity $/$ time $=750 \mathrm{~km} / \mathrm{h} / 2.2 \mathrm{~min}$ $=340.9(\mathrm{~km} / \mathrm{h}) / \mathrm{min}$
4) A runner accelerates from $0.52 \mathrm{~m} / \mathrm{s}$ to $0.78 \mathrm{~m} / \mathrm{s}$ in 0.5 s . What is her acceleration?

Initial velocity $($ from $)=0.52 \mathrm{~m} / \mathrm{s}$
Final velocity (to) $=0.78 \mathrm{~m} / \mathrm{s}$
Time: 0.5 s

Acceleration $=\underline{\text { Final velocity }- \text { Initial velocity }}$
Time

Acceleration $=\frac{\text { Final velocity }- \text { Initial velocity }=\frac{0.78-0.52}{0.5 \mathrm{~s}}=\frac{0.26(\mathrm{~m} / \mathrm{s})}{0.5 \mathrm{~s}} \text { Time }}{0.5}$
$\frac{0.26(\mathrm{~m} / \mathrm{s})}{0.5 \mathrm{~s}}=\frac{0.26}{0.5} \frac{(\mathrm{~m} / \mathrm{s})}{\mathrm{S}}=0.52(\mathrm{~m} / \mathrm{s}) / \mathrm{s}=0.52 \mathrm{~m} / \mathrm{s}^{2}$
5) A driver entering the outskirts of a city takes her foot off the accelerator so that her car slows down from $90 \mathrm{~km} / \mathrm{h}$ to $50 \mathrm{~km} / \mathrm{h}$ in 10 s . Find the car's average acceleration.

Initial velocity (from): $90 \mathrm{~km} / \mathrm{h}$
Final velocity (to): $50 \mathrm{~km} / \mathrm{h}$
Time: 10 s

Acceleration $=\frac{\text { Final velocity }- \text { Initial velocity }}{\text { Time }}=$

Acceleration $=\frac{\text { Final velocity }- \text { Initial velocity }}{\text { Time }}=\frac{50 \mathrm{~km} / \mathrm{h}-90 \mathrm{~km} / \mathrm{h}}{10 \mathrm{~s}}=\frac{-40 \mathrm{~km} / \mathrm{h}}{10 \mathrm{~s}}$
$-4(\mathrm{~km} / \mathrm{h})=-4(\mathrm{~km} / \mathrm{h}) / \mathrm{s}$
s
Acceleration $=-4 \mathrm{~km} / \mathrm{h}$ in every S
by 10 s , it is pushing it $-4 \times 10=-40 \mathrm{~km} / \mathrm{h}$
starting at $90 \mathrm{~km} / \mathrm{h}-40 \mathrm{~km} / \mathrm{s}=50 \mathrm{~km} / \mathrm{h}$
6. A boy rolls a ball up a hill giving it a velocity of $4.5 \mathrm{~m} / \mathrm{s}[\mathrm{N}]$. Five second later, the ball is rolling down the hill with a velocity of $1.5 \mathrm{~m} / \mathrm{s}[\mathrm{S}]$. What is the ball's acceleration?
Make both velocity in the same direction; Both South or Both North

Option 1

Final velocity : $1.5 \mathrm{~m} / \mathrm{s}[\mathrm{S}]=\mathbf{= 1 . 5} \mathbf{m} / \mathrm{s}[\mathrm{N}]$
Time: 5 s

Option 2

Initial velocity: $+4.5 \mathrm{~m} / \mathrm{s}[\mathrm{N}]=-4.5 \mathrm{~m} / \mathrm{s}[\mathrm{S}]$
Final velocity : $+1.5 \mathrm{~m} / \mathrm{s}$ [S]
Time: 5 s

Acceleration $=\underline{\text { Final velocity }- \text { Initial velocity }=1.5 \mathrm{~m} / \mathrm{s}[\mathrm{S}]-4.5 \mathrm{~m} / \mathrm{s}[\mathrm{N}]}$ Time

Acceleration $=\frac{1.5 \mathrm{~m} / \mathrm{s}[\mathbf{S}]-4.5 \mathrm{~m} / \mathrm{s}[\mathrm{N}]}{5 \mathrm{~s}}=$
Option 2
Initial velocity: $+4.5 \mathrm{~m} / \mathrm{s}[\mathrm{N}]=-4.5 \mathrm{~m} / \mathrm{s}[\mathrm{S}]$
Final velocity : $1.5 \mathrm{~m} / \mathrm{s}[\mathrm{S}]$
Time: 5 s

$$
-1.5 \mathrm{~m} / \mathrm{s}[\mathrm{~S}]=\frac{(-4.5 \mathrm{~m} / \mathrm{s}[\mathrm{~S}])}{5 \mathrm{~s}}=\frac{1.5+4.5}{5 \mathrm{~s}}=\frac{6 \mathrm{~m} / \mathrm{s}[\mathrm{~S}]}{5 \mathrm{~s}}=1.2 \mathrm{~m} / \mathrm{s} / \mathrm{s}=1.2 \mathrm{~m} / \mathrm{s}^{2}[\mathrm{~S}]
$$

Option 1

Final velocity : $1.5 \mathrm{~m} / \mathrm{s}[\mathrm{S}]=\mathbf{- 1 . 5} \mathbf{~ m} / \mathrm{s}[\mathrm{N}]$
Time: 5 s

$$
\frac{-1.5 \mathrm{~m} / \mathrm{s}[\mathrm{~N}]-(4.5 \mathrm{~m} / \mathrm{s}[\mathrm{~N}])}{5 \mathrm{~s}}=\frac{-1.5-4.5}{5 \mathrm{~s}}=\frac{-6 \mathrm{~m} / \mathrm{s}[\mathrm{~N}]}{5 \mathrm{~s}}=-1.2 \mathrm{~m} / \mathrm{s}^{2}[\mathrm{~N}]
$$

Examples of vector quantity:
Displacement: $5 \mathrm{~m}[\mathrm{E}]$
Velocity: $3 \mathrm{~m} / \mathrm{s}$ [N]
Acceleration: $8 \mathrm{~m} / \mathrm{s}^{2}[\mathrm{~S}]$

Which one is not a vector?

Vector (velocity):

1) Direction
2) Unit
3) quantity or magnitude (size, number)

Acceleration is a change in Velocity. Acceleration is a vector
Three situations when an object accelerates

1) speeding $(5 \mathrm{~m} / \mathrm{s}[\mathrm{N}]$ to $10 \mathrm{~m} / \mathrm{s}[\mathrm{N}])$
2) slowing ($25 \mathrm{~m} / \mathrm{s}[\mathrm{E}]$ to $0 \mathrm{~m} / \mathrm{s}[\mathrm{E}]$)
3) change of direction ($25 \mathrm{~m} / \mathrm{s}$ [N] to $25 \mathrm{~m} / \mathrm{s}$ [E]
$15 \mathrm{~m} / \mathrm{s}$ [N] to $15 \mathrm{~m} / \mathrm{s}$ [N] = no acceleration

Vector quantity should have 3 characters (things);
Example : Velocity $=2 \mathrm{~m} / \mathrm{s}$ [N]
Displacement $=2 \mathrm{~m}[\mathrm{~S}]$
Acceleration $=2.2 \mathrm{~m} / \mathrm{s}^{2}[\mathbf{E}]$

1) Direction
2) Units
3) Magnitude (numbers, size) (slowing down or speeding)

Acceleration: Change in velocity;
An object accelerate with the velocity changes.

Acceleration:

1) slowing down $(5 \mathrm{~m} / \mathrm{s}[\mathrm{N}]$ to $3 \mathrm{~m} / \mathrm{s}[\mathrm{N}]$
2) speeding ($\mathbf{7 \mathrm { m } / \mathrm { s } [\mathrm { S }] \text { to } 1 5 \mathrm { m } / \mathrm { s } [\mathrm { S }]) ~}$
3) Direction ($+15 \mathrm{~m} / \mathrm{s}[\mathbf{E}]$ to $-15 \mathrm{~m} / \mathrm{s}[\mathbf{W}])$

What else could be a change in velocity?

