So far we've used grams (mass), In lab:

What about using volume in lab?

Solution Concentration and Solution Stoichiometry

Solutions:

2 (or more) components

We need a system to descried "how much" in a solution

Relate moles of solute to volume of solution (L)

We can use the molarity of a solution as a conversion factor between moles (mol) of the solute and liters (L) of the solution.

• Preparing a solution of specific concentration

http://2012books.lardbucket.org/books/principles-of-general-chemistry-v1.0/s08-02-solutionconcentrations.html

Dr. Al-Qaisi

4.4 g

How many moles of NaCl are there in 500. mL of 2.5 M NaCl solution? How many grams?

1.25 mol

73.125g NaCl

How many mL of solution is needed to make 0.200M NaCl solution using 0.0500 moles of NaCl?

- Solution Dilution
- > In dilution the amount of solute doesn't change, just the volume of solution:

moles solute in concentrated solution = moles solute in diluted solution

What volume (mL) of a concentrated solution of sodium hydroxide (6.00 M) must be diluted to 200. mL to make a 1.50 M solution of sodium hydroxide?

You have 50.0 mL of 3.0 M NaOH and you want 0.50 M NaOH. What do you do?

300 ml

How many mL of 3.00 M HCl are needed to completely react with 4.85 g CaCO₃?

 $2 \operatorname{HCl}(aq) + \operatorname{CaCO}_3(s) \longrightarrow \operatorname{CaCl}_2(aq) + \operatorname{CO}_2(g) + \operatorname{H}_2O(l)$

Zinc reacts with acids to produce H_2 gas. Have 10.0 g of Zn. What volume in mls of 2.50 M HCl is needed to convert the Zn completely? $Zn(s) + 2 HCl(aq) \longrightarrow ZnCl_2(aq) + H_2(g)$

122.324

Practice

How many mL of a 0.150 M Na₂S solution are needed to completely react 18.5 mL of 0.225 M NiCl₂ solution?

 $NiCl_2(aq) + Na_2S(aq) \longrightarrow NiS(s) + 2 NaCl(aq)$

27.75

If 22.8 mL of 0.100 M MgCl₂ is needed to completely react 15.0 mL of AgNO₃ solution, what is the molarity of the AgNO₃ solution? MgCl₂(aq) + 2 AgNO₃(aq) \longrightarrow 2 AgCl(s) + Mg(NO₃)₂(aq)

4.56 X 10⁻³ mol

0.304 M

Solutions and Solubility:

"Like I	Dissolves Like"
Nonpolar solutes dissolve best	in <u>nonpolar solvents</u>
Fats	Benzene
Steroid	Hexane
Waxes	Toluene

Polar and ionic solutes dissolve best in polar solvents

Inorganic Salt	Water
----------------	-------

Sugars

Small alcohols

Acetic acid

4 Aqueous Solutions: (aq) *solvent is water Ions in Solution: Electrolytes

Timberlake, General, Organic, and Biological Chemistry. Copyright © Pearson Education Inc., publishing as Benjamin Cummings

4 Strong Electrolytes: 100% ionization

Category	Example
• Ionic compounds soluble in water	
• Strong acids	
• Strong bases	

4 Strong Electrolytes: 100% ionization

Strong Acids	Strong Bases
Hydrochloric, HCl	Group 1A metal hydroxides [LiOH, NaOH, KOH, RbOH, CsOH]
Hydrobromic, HBr	Heavy group 2A metal hydroxides [Ca(OH) ₂ , Sr(OH) ₂ , Ba(OH) ₂]
Hydroiodic, HI	
Chloric, HClO ₃	
Perchloric, HClO ₄	
Nitric, HNO ₃	
Sulfuric, H ₂ SO ₄	
© 2012 Pearson Education, Inc.	

Ion producing: hydration (water around ions)

 $NaCl(aq) + H_2O(l)$

✤ Weak Electrolytes: do not ionize completely. This is represented as a reversible reaction

Category	Example
Weak acids	
Weak bases	

 $HF(aq) + H_2O(l)$

$$H_2CO_3(aq) + H_2O(l) \longrightarrow H^+(aq) + HCO_3^-(aq)$$

Nonelectrolytes: Do not ionize (No ions) no conduction Sugar, Ethanol

✓ Aqueous Reactions and Net Ionic Equations

There are many ways to write the chemical equation:

Double Replacement Reactions

Metathesis (Exchange) Reactions : $AX + BY \rightarrow AY + BX$

1. Molecular equation:

 $K_2SO_4(aq) + 2 \text{ AgNO}_3(aq) \rightarrow 2 \text{ KNO}_3(aq) + \text{Ag}_2SO_4(s)$

- 2. <u>Ionic Equation:</u> write all soluble ions and insoluble compounds make sure to write the state of each.
- Rules of writing the complete ionic equation:
- **4** Aqueous strong electrolytes are written as ions.
- Soluble salts
- strong acids
- strong bases
- 4 Insoluble substances, weak electrolytes, and nonelectrolytes are written in molecule form.
 - ♦ Solids,
 - liquids,
 - **i**gases
 - are not dissolved, hence molecule form

Ionic Equation:

3. Net Ionic Equation: Only include what is changing! (cancel out similar species " Spectator ions" on both sides of the equation)

Three common reaction types in aqueous solution:

1. Precipitation Reactions

 $\operatorname{AgNO}_{3(aq)} + \operatorname{KCl}_{(aq)} \longrightarrow \operatorname{AgCl}_{(s)} + \operatorname{KNO}_{3(aq)}$

 $Pb(NO_3)_2(aq) + KI(aq)$

$BaCl_2(aq) + Na_2SO_4(aq)$

?

Mg(OH)₂

♣ Precipitte is the deriving force for the reaction

✓ Precipitation reactions do not always occur when two water soluble salts are mixed NaCl (aq) + KI (aq)

How do you know it will happen?

Compounds Containing the Fol	lowing lons	
Are Generally Soluble		Exceptions
${ m Li}^+$, ${ m Na}^+$, ${ m K}^+$, and ${ m NH_4}^+$		None
NO_3^- and $C_2H_3O_2^-$		None
${\sf CI}^-,{\sf Br}^-,{\sf and}\;{\sf I}^-$		When these ions pair with ${\rm Ag}^+$, ${\rm Hg_2}^{2+}$, or ${\rm Pb}^{2+}$, the resulting compounds are insoluble.
S04 ²⁻		When SO_4^{2-} pairs with Sr^{2+} , Ba^{2+} , Pb^{2+} , Ag^+ , or Ca^{2+} , the resulting compound is insoluble.
Compounds Containing the Fol Are Generally Insoluble	llowing lons	Exceptions
OH^- and S^{2-}		When these ions pair with Li ⁺ , Na ⁺ , K ⁺ , or NH ₄ ⁺ the resulting compounds are soluble.
		When S^{2-} pairs with Ca^{2+} , Sr^{2+} , or Ba^{2+} , the resulting compound is soluble.
		When OH^- pairs with Ca^{2+} , Sr^{2+} , or Ba^{2+} , the resulting compound is slightly soluble.
$\mathrm{CO_3}^{2-}$ and $\mathrm{PO_4}^{3-}$		When these ions pair with Li ⁺ , Na ⁺ , K ⁺ , or NH ₄ ⁺ the resulting compounds are soluble.
hat is soluble in water?		
$H_4)_2CO_3$	BaSO ₄	Li ₂ S

When writing ionic equations remember that : solids, liquids, gases, weak acids and weak bases **DON'T FORM IONS. Write them in the ionic equation in the same form as they appear in the molecular equation (copy and past)

AgBr

 $Pb(NO_3)_2$

 $\overset{\bullet}{\Sigma}$ Write the molecular, ionic and net ionic equations for the following:

1) $(NH_4)_2SO_4(aq) + Sr(NO_3)_2$ <u>Molecular eqn:</u>

<u>Ionic Eqn:</u>

<u>Net ionic Eqn</u>

2) MgCl₂ (aq) + Ca(OH)₂ (aq)

Molecular eqn:

<u>Ionic Eqn:</u>

<u>Net ionic Eqn</u>

2. Gas-Evolving Reactions

$$K_2S(aq) + H_2SO_4(aq) \rightarrow K_2SO_4(aq) + H_2S(g)$$

 $NaHCO_3(aq) + HCl(aq)$

Types of Compounds That Undergo Gas-Evolution Reactions			
Reactant Type	Intermediate Product	Gas Evolved	Example
Sulfides	None	H ₂ S	$2 \operatorname{HCl}(aq) + \operatorname{K}_2 \operatorname{S}(aq) \longrightarrow \operatorname{H}_2 \operatorname{S}(g) + 2 \operatorname{KCl}(aq)$
Carbonates and bicarbonates	H ₂ CO ₃	CO ₂	$2 \operatorname{HCl}(aq) + \operatorname{K}_2\operatorname{CO}_3(aq) \longrightarrow \operatorname{H}_2\operatorname{O}(I) + \operatorname{CO}_2(g) + 2 \operatorname{KCl}(aq)$
Sulfites and bisulfites	H_2SO_3	SO ₂	$2 \operatorname{HCl}(aq) + \operatorname{K}_2 \operatorname{SO}_3(aq) \longrightarrow \operatorname{H}_2 \operatorname{O}(I) + \operatorname{SO}_2(g) + 2 \operatorname{KCl}(aq)$
Ammonium	NH ₄ OH	NH ₃	$NH_4Cl(aq) + KOH(aq) \rightarrow H_2O(I) + NH_3(g) + KCl(aq)$

Types of Com	nounds That I	Indergo Gas-E	volution Reaction	ons
i ypes or com	pounus i naco	nuci go Gas-E	volution incaction	0115

P_{ractice}

Write the balanced molecular, Ionic and net ionic equation for precipitation reaction when aqueous solutions of CaCl₂ and Na₂CO₃ are mixed

Molecular eqn:

Ionic Eqn:

<u>Net ionic Eqn</u>

Acid–Base Reactions (Neutralization)

Arrhenius Definitions:

- Acid: Substance that produces H^+ when dissolves in water HCl(aq) $\longrightarrow H^+(aq) + Cl^-(aq)$
- **Base:** Substance that produces OH^- ions in aqueous solution NaOH(*aq*) \longrightarrow Na⁺(*aq*) + OH⁻(*aq*)

** H^+ and H_3O^+

- \checkmark If acid 100% dissociated, then its strong (7 strong acids)
- \checkmark Most acids are weak acids (if not listed among the 7 acids)

Additional classifications for acids	:	
Monoprotic	Diprotic	Triprotic

Bases have variable strength too

Strong bases: group (IA), Ca, Sr, and Ba hydroxides

Weak bases: Carbonates, bicarbonates, ammonia, and hydroxides that are not strong bases

♣ <u>Acids-Base Neutralization</u> Acid + base _____ salt + water

Strong acid + Strong base

Strong base + weak acid

Also **gas forming** reactions: HCl (aq) + Na₂CO₃ (aq)

Acid–Base Titrations

Indicator in Titration

Calculations in titration: Always write the balance chemical equation

A 31.5 mL aliquot of HNO₃ (aq) of unknown concentration was titrated with 0.0134 M NaOH (aq). It took 23.9 mL of the base to reach the endpoint of the titration. The concentration (M) of the acid was

Special case Short cut:

Apples contain malic acid, C₄H₆O₅.
C₄H₆O₅(aq) + 2 NaOH(aq) Na₂C₄H₄O₅(aq) + 2 H₂O(liq)
76.80 g of apple requires 34.56 mL of 0.664 M NaOH for titration. What is weight % of malic acid?

1.5386

2.00%

pH and Buffers: For more information read from chapters 15.5-15.6 and 16.2

 $\mathbf{pH} = -\log \left[\mathbf{H}_{3}\mathbf{O}^{+}\right]$

 $= - \log [H^+]$

pH scale ranges from 1.0 to 14.0.

- Neutral pH is 7.0.
- Acidic solutions have pH < 7.0
- Basic solutions have pH > 7.0

pOH = 14 - pH pOH = -log [OH⁻]

Find the pH for $[H^+]=10^{-3}M$

Find the pH for $[H^+]=5 \times 10^{-3} M$

- To find pH in the hydronium ion concentration is known
- [H+]= 10^{-pH}

What is the H+ concentration for a solution with a pH of 12.2?

Find the $[H^+]$ for pH=5

Find the [H+] for pH=5.8

Buffer

- A solution contains a weak acid and its conjugate base with the ability to resist changes in pH.

$$\overset{0}{Na} \rightarrow \overset{+1}{Na} + e^{-1}$$

Reduction: Gain one or more electron

$$\overset{0}{Cl} + e^{-} \rightarrow \overset{-1}{Cl}$$

$$2 \overset{0}{Na} + \overset{0}{Cl_{2}} \rightarrow 2 \overset{+1}{Na} \overset{-1}{Cl}$$

The Oxidation Number Rules – SIMPLIFIED

- ✓ The sum of the oxidation numbers in ANYTHING is equal to its charge
- Oxidation states are imaginary charges assigned based on a set of rules.
- ✤ Ion charges are real, measurable charges.
- Atoms in their natural state will always have an oxidation number of zero. Examples include Na (s), Cl₂(g), H₂(g), Hg(l), N₂(g), Fe(s), etc.
- For ions with only a single atom, the oxidation number is equal to the charge on the ion.
- Elements in Group 1A: always +1
- Elements in Group 2A: always +2
- ➢ Aluminum: always +3
- ▶ Fluorine is always -1 in compounds with other elements.
- Oxygen is always -2 in compounds with other elements except when combined with fluorine or peroxides.
- Cl, Br and I will always be -1 in compounds with other elements unless combined with oxygen or fluorine.
- Hydrogen is always +1 in compounds with other elements except when combined with metals to form metal hydrides. The oxidation number for a hydride (H⁻) is -1.

Remember the sum of the oxidation numbers is zero (0) for a neutral compound and is equal to the net charge for a polyatomic ion.

Determine the oxidation number of the element in each of the following :

NH ₃	N =
ClO	Cl=
H ₃ PO ₄	P =
MnO ₄	Mn =
$Cr_2O_7^{2-}$	Cr
$H_2PO_4^-$	Р
$\mathrm{SO_3}^{2-}$	S
N_2O_4	Ν

Combustion Reactions: type of redox reaction

 $CH_4(g) + 2O_2(g) \rightarrow CO_2(g) + 2H_2O(g)$ Oxidation state: -4 +1 0 +4 -2 +1 -2

$$C_2H_5OH(l) + 3O_2(g) \rightarrow 2CO_2(g) + 3H_2O(g)$$

CHEM 134-F 2018	ICE 1	Name
Lab Sec		UMDID#

1) Silver ions can be precipitated from aqueous solutions by the addition of aqueous chloride $Ag^{+}(aq) + Cl^{-}(aq) \rightarrow AgCl(s)$

Silver chloride is virtually insoluble in water so that the reaction appears to go to completion. How many grams of solid NaCl must be added to 25.0 mL of 0.366 M AgNO₃ solution to completely precipitate the silver?

2) How would you prepare 9.70 g of PbCl₂(s) from a 0.100 M solution of Pb(NO₃)₂ and a 0.200 M solution of CaCl₂?

CHEM 134-Fall 2018	ICE 2	Name
Lab Sec		UMDID#

A 25.0 mL sample of H_2SO_4 is neutralized with NaOH. What is the concentration of the H_2SO_4 if 35.0 mL of 0.150 *M* NaOH are required to completely neutralize the acid?