So far we've used grams (mass), In lab:
What about using volume in lab?

Solution Concentration and Solution Stoichiometry

Solutions:
2 (or more) components

We need a system to descried "how much" in a solution
Relate moles of solute to volume of solution (L)

* We can use the molarity of a solution as a conversion factor between moles (mol) of the solute and liters (L) of the solution.
- Preparing a solution of specific concentration

(a) An amount of solute is weighed out on an analytical balance and then

(b) A portion of the solvent is added to the volumetric flask.

(d) Additional solvent is added up to the mark on the volumetric flask.
http://2012books.lardbucket.org/books/principles-of-general-chemistry-v1.0/s08-02-solutionconcentrations.html

How would you prepare 500.0 mL of a 0.15 M NaCl solution?
4.4 g
1.25 mol
73.125 g NaCl

Solution Dilution

In dilution the amount of solute doesn't change, just the volume of solution:
moles solute in concentrated solution = moles solute in diluted solution

What volume (mL) of a concentrated solution of sodium hydroxide $(6.00 \mathrm{M})$ must be diluted to 200. mL to make a 1.50 M solution of sodium hydroxide?

How many mL of 3.00 M HCl are needed to completely react with $4.85 \mathrm{~g} \mathrm{CaCO}_{3}$?

$$
2 \mathrm{HCl}(a q)+\mathrm{CaCO}_{3}(s) \longrightarrow \mathrm{CaCl}_{2}(a q)+\mathrm{CO}_{2}(g)+\mathrm{H}_{2} \mathrm{O}(l)
$$

Practice
Zinc reacts with acids to produce H_{2} gas. Have 10.0 g of Zn . What volume in mls of 2.50 M HCl is needed to convert the Zn completely?

$$
\mathrm{Zn}(\mathrm{~s})+2 \mathrm{HCl}(\mathrm{aq}) \xrightarrow{ } \mathrm{ZnCl}_{2}(\mathrm{aq})+\mathrm{H}_{2}(\mathrm{~g})
$$

122.324

Practice
How many mL of a $0.150 \mathrm{M} \mathrm{Na}_{2} \mathrm{~S}$ solution are needed to completely react 18.5 mL of $0.225 \mathrm{M} \mathrm{NiCl}_{2}$ solution?

$$
\mathrm{NiCl}_{2}(a q)+\mathrm{Na}_{2} \mathrm{~S}(a q) \longrightarrow \quad \mathrm{NiS}(s)+2 \mathrm{NaCl}(a q)
$$

\therefore If 22.8 mL of $0.100 \mathrm{M} \mathrm{MgCl}_{2}$ is needed to completely react 15.0 mL of AgNO_{3} solution, what is the molarity of the AgNO_{3} solution?
$\mathrm{MgCl}_{2}(a q)+2 \mathrm{AgNO}_{3}(a q) \longrightarrow 2 \mathrm{AgCl}(s)+\mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}(a q)$

Solutions and Solubility:

"Like Dissolves Like"
Nonpolar solutes dissolve best in nonpolar solvents

Fats
Steroid
Waxes

Benzene
Hexane
Toluene

Polar and ionic solutes dissolve best in polar solvents

Inorganic Salt
Sugars

Water
Small alcohols
Acetic acid
4 Aqueous Solutions: (aq) *solvent is water Ions in Solution: Electrolytes

Strong electrolyte

Weak electrolyte

Nonelectrolyte

Strong Electrolytes: 100\% ionization

Category	Example
Ionic compounds soluble in water	
•Strong acids	
•Strong bases	

Strong Electrolytes: 100\% ionization

Strong Acids	Strong Bases
Hydrochloric, HCl	Group 1A metal hydroxides $[\mathrm{LiOH}, \mathrm{NaOH}, \mathrm{KOH}, \mathrm{RbOH}, \mathrm{CsOH}]$
Hydrobromic, HBr	Heavy group 2A metal hydroxides $\left[\mathrm{Ca}(\mathrm{OH})_{2}, \mathrm{Sr}(\mathrm{OH})_{2}, \mathrm{Ba}(\mathrm{OH})_{2}\right]$
Hydroiodic, HI	
Chloric, HClO_{3}	
Perchloric, HClO_{4}	
Nitric, HNO_{3}	
Sulfuric, $\mathrm{H}_{2} \mathrm{SO}_{4}$	

Ion producing: hydration (water around ions)
$\mathrm{NaCl}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}$ (l)
\& Weak Electrolytes: do not ionize completely. This is represented
as a reversible reaction

Category	
Weak acids	
Weak bases	

$\mathrm{HF}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \longrightarrow$
$\mathrm{H}_{2} \mathrm{CO}_{3}(a q)+\mathrm{H}_{2} \mathrm{O}(l) \longleftrightarrow \mathrm{H}^{+}(a q)+\mathrm{HCO}_{3}{ }^{-}(a q)$
$>$ Nonelectrolytes: Do not ionize (No ions) no conduction Sugar, Ethanol

Aqueous Reactions and Net Ionic Equations

There are many ways to write the chemical equation:

Double Replacement Reactions

Metathesis (Exchange) Reactions : $\mathrm{AX}+\mathrm{BY} \rightarrow \mathrm{AY}+\mathrm{BX}$

1. Molecular equation:

$\mathrm{K}_{2} \mathrm{SO}_{4}(a q)+2 \mathrm{AgNO}_{3}(a q) \rightarrow 2 \mathrm{KNO}_{3}(a q)+\mathrm{Ag}_{2} \mathrm{SO}_{4}(s)$
2. Ionic Equation: write all soluble ions and insoluble compounds make sure to write the state of each.

- Rules of writing the complete ionic equation:
* Aqueous strong electrolytes are written as ions.
- Soluble salts
- strong acids
- strong bases
* Insoluble substances, weak electrolytes, and nonelectrolytes are written in molecule form.

2 Solids,
2 liquids,
2 gases

- are not dissolved, hence molecule form

Ionic Equation:

3. Net Ionic Equation: Only include what is changing! (cancel out similar species " Spectator ions" on both sides of the equation)

Three common reaction types in aqueous solution:

1. Precipitation Reactions
$\mathrm{AgNO}_{3(a q)}+\mathrm{KCl}_{(a q)} \longrightarrow \mathrm{AgCl}_{(s)}+\mathrm{KNO}_{3(a q)}$
$\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq})+\mathrm{KI}(\mathrm{aq})$

$\mathrm{BaCl}_{2}(\mathrm{aq})+\mathrm{Na}_{2} \mathrm{SO}_{4}(\mathrm{aq})$

Precipitte is the deriving force for the reaction
$\checkmark \quad$ Precipitation reactions do not always occur when two water soluble salts are mixed $\mathrm{NaCl}(\mathrm{aq})+\mathrm{KI}(\mathrm{aq})$
How do you know it will happen?

Compounds Containing the Following Ions Are Generally Soluble	Exceptions
$\mathrm{Li}^{+}, \mathrm{Na}^{+}, \mathrm{K}^{+}$, and NH_{4}^{+}	None
$\mathrm{NO}_{3}{ }^{-}$and $\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}$	None
$\mathrm{Cl}^{-}, \mathrm{Br}^{-}$, and I^{-}	When these ions pair with $\mathrm{Ag}^{+}, \mathrm{Hg}_{2}{ }^{2+}$, or Pb^{2+}, the resulting compounds are insoluble.
$\mathrm{SO}_{4}{ }^{2-}$	When $\mathrm{SO}_{4}{ }^{2-}$ pairs with $\mathrm{Sr}^{2+}, \mathrm{Ba}^{2+}, \mathrm{Pb}^{2+}, \mathrm{Ag}^{+}$, or Ca^{2+}, the resulting compound is insoluble.
Compounds Containing the Following lons Are Generally Insoluble	Exceptions
OH^{-}and S^{2-}	When these ions pair with $\mathrm{Li}^{+}, \mathrm{Na}^{+}, \mathrm{K}^{+}$, or $\mathrm{NH}_{4}{ }^{+}$, the resulting compounds are soluble.
	When S^{2-} pairs with $\mathrm{Ca}^{2+}, \mathrm{Sr}^{2+}$, or Ba^{2+}, the resulting compound is soluble.
	When OH^{-}pairs with $\mathrm{Ca}^{2+}, \mathrm{Sr}^{2+}$, or Ba^{2+}, the resulting compound is slightly soluble.
$\mathrm{CO}_{3}{ }^{2-}$ and $\mathrm{PO}_{4}{ }^{3-}$	When these ions pair with $\mathrm{Li}^{+}, \mathrm{Na}^{+}, \mathrm{K}^{+}$, or $\mathrm{NH}_{4}{ }^{+}$, the resulting compounds are soluble.

9
What is soluble in water?
$\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}$
BaSO_{4}
$\mathrm{Li}_{2} \mathrm{~S}$
$\mathrm{Mg}(\mathrm{OH})_{2}$
AgBr
$\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$
**When writing ionic equations remember that :
solids, liquids, gases, weak acids and weak bases DON'T FORM IONS.
Write them in the ionic equation in the same form as they appear in the molecular equation (copy and past)

Write the molecular, ionic and net ionic equations for the following:

1) $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}(\mathrm{aq})+\mathrm{Sr}\left(\mathrm{NO}_{3}\right)_{2}$

Molecular eqn:

Ionic Eqn:

Net ionic Eqn

2) $\mathrm{MgCl}_{2}(\mathrm{aq})+\mathrm{Ca}(\mathrm{OH})_{2}(\mathrm{aq})$

Molecular eqn:

Ionic Eqn:

Net ionic Eqn

2. Gas-Evolving Reactions

$\mathrm{K}_{2} \mathrm{~S}(a q)+\mathrm{H}_{2} \mathrm{SO}_{4}(a q) \rightarrow \mathrm{K}_{2} \mathrm{SO}_{4}(a q)+\mathrm{H}_{2} \mathrm{~S}(g)$
$\mathrm{NaHCO}_{3}(a q)+\mathrm{HCl}(a q)$

Types of Compounds That Undergo Gas-Evolution Reactions

Reactant Type	Intermediate Product	Gas Evolved	Example
Sulfides	None	$\mathrm{H}_{2} \mathrm{~S}$	$2 \mathrm{HCl}(a q)+\mathrm{K}_{2} \mathrm{~S}(a q) \rightarrow \mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})+2 \mathrm{KCl}(a q)$
Carbonates and bicarbonates	$\mathrm{H}_{2} \mathrm{CO}_{3}$	CO_{2}	$2 \mathrm{HCl}(a q)+\mathrm{K}_{2} \mathrm{CO}_{3}(a q) \rightarrow \mathrm{H}_{2} \mathrm{O}(l)+\mathrm{CO}(g)+2 \mathrm{KCl}(a q)$
Sulfites and bisulfites	$\mathrm{H}_{2} \mathrm{SO}_{3}$	SO_{2}	$2 \mathrm{HCl}(a q)+\mathrm{K}_{2} \mathrm{SO}_{3}(a q) \rightarrow \mathrm{H}_{2} \mathrm{O}(I)+\mathrm{SO}_{2}(g)+2 \mathrm{KCl}(a q)$
Ammonium	$\mathrm{NH}_{4} \mathrm{OH}$	NH_{3}	$\mathrm{NH}_{4} \mathrm{Cl}(a q)+\mathrm{KOH}(a q) \rightarrow \mathrm{H}_{2} \mathrm{O}(I)+\mathrm{NH}_{3}(g)+\mathrm{KCl}(a q)$

Write the balanced molecular, Ionic and net ionic equation for precipitation reaction when aqueous solutions of CaCl_{2} and $\mathrm{Na}_{2} \mathrm{CO}_{3}$ are mixed

Molecular eqn:

Ionic Eqn:

Net ionic Eqn

Acid-Base Reactions (Neutralization)

Arrhenius Definitions:

- Acid: Substance that produces \mathbf{H}^{+}when dissolves in water

$$
\mathrm{HCl}(a q) \quad \longrightarrow \mathrm{H}^{+}(a q)+\mathrm{Cl}^{-}(a q)
$$

- Base: Substance that produces $\mathbf{O H}^{-}$ions in aqueous solution $\mathrm{NaOH}(a q) \longrightarrow \mathrm{Na}^{+}(a q)+\mathrm{OH}^{-}(a q)$
** H^{+}and $\mathrm{H}_{3} \mathrm{O}^{+}$
\checkmark If acid 100% dissociated, then its strong (7 strong acids)
\checkmark Most acids are weak acids (if not listed among the 7 acids)
Additional classifications for acids:
Monoprotic Diprotic
Triprotic

Bases have variable strength too

Strong bases: group (IA), Ca, Sr, and Ba hydroxides
Weak bases: Carbonates, bicarbonates, ammonia, and hydroxides that are not strong bases

* Acids-Base Neutralization

Acid + base $\longrightarrow \quad$ salt + water
Strong acid + Strong base
Strong base + weak acid

Also gas forming reactions:
$\mathrm{HCl}(\mathrm{aq})+\mathrm{Na}_{2} \mathrm{CO}_{3}(\mathrm{aq})$

Acid-Base Titrations

Indicator in Titration

Calculations in titration: Always write the balance chemical equation

A 31.5 mL aliquot of $\mathrm{HNO}_{3}(\mathrm{aq})$ of unknown concentration was titrated with 0.0134 M NaOH (aq). It took 23.9 mL of the base to reach the endpoint of the titration. The concentration (M) of the acid was

* Special case Short cut:

${ }^{2} 3$ Apples contain malic acid, $\mathrm{C}_{4} \mathrm{H}_{6} \mathrm{O}_{5}$.
$\mathrm{C}_{4} \mathrm{H}_{6} \mathrm{O}_{5}(\mathrm{aq})+2 \mathrm{NaOH}(\mathrm{aq}) \longrightarrow \mathrm{Na}_{2} \mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O}_{5}(\mathrm{aq})+2 \mathrm{H}_{2} \mathrm{O}$ (liq)
76.80 g of apple requires 34.56 mL of 0.664 M NaOH for titration. What is weight $\%$ of malic acid?
pH and Buffers: For more information read from chapters 15.5-15.6 and 16.2

$\mathbf{p H}=-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$
$=-\log \left[\mathrm{H}^{+}\right]$
$\mathbf{p H}$ scale ranges from 1.0 to $\mathbf{1 4 . 0}$.

- Neutral pH is 7.0.
- Acidic solutions have $\mathrm{pH}<7.0$
- Basic solutions have $\mathrm{pH}>7.0$
$\mathrm{pOH}=14-\mathrm{pH}$
$\mathrm{pOH}=-\log \left[\mathrm{OH}^{-}\right]$
Find the pH for $\left[\mathrm{H}^{+}\right]=10^{-3} \mathrm{M}$

Find the pH for $\left[\mathrm{H}^{+}\right]=5 \mathrm{X} 10^{-3} \mathrm{M}$

- To find pH in the hydronium ion concentration is known
- $[\mathrm{H}+]=10^{-\mathrm{pH}}$

What is the $\mathrm{H}+$ concentration for a solution with a pH of 12.2 ?

Find the $\left[\mathrm{H}^{+}\right]$for $\mathrm{pH}=5$

Find the $[\mathrm{H}+]$ for $\mathrm{pH}=5.8$

Buffer

- A solution contains a weak acid and its conjugate base with the ability to resist changes in pH .

Weak acid	Conjugate base
Acetic acid, $\mathrm{CH}_{3} \mathrm{COOH}$	Acetate ion, $\mathrm{CH}_{3} \mathrm{COO}^{-}$
Remove H^{+}	

Carbonic acid, $\mathrm{H}_{2} \mathrm{CO}_{3}$

In this acetate buffer, the weak acid acetic acid, $\mathrm{CH}_{3} \mathrm{COOH}$, goes after any added OH^{-}ions and the weak base acetate ion, $\mathrm{CH}_{3} \mathrm{COO}^{-}$, goes after any added $\mathrm{H}_{3} \mathrm{O}^{+}$ions.

Weak acid
Conjugate base

Oxidation-Reduction Reactions "Redox"

Oxidation: loose one or more electron

Reduction: Gain one or more electron

$$
\stackrel{0}{C l}+e^{-} \rightarrow \stackrel{-1}{C l}
$$

$$
2 \stackrel{0}{\mathrm{Na}}+{\stackrel{0}{\mathrm{Cl}}{ }_{2} \rightarrow 2 \stackrel{+1}{\mathrm{Na}}{ }^{-1} \mathrm{C}}^{-1}
$$

The Oxidation Number Rules - SIMPLIFIED

\checkmark The sum of the oxidation numbers in ANYTHING is equal to its charge

* Oxidation states are imaginary charges assigned based on a set of rules.
* Ion charges are real, measurable charges.
- Atoms in their natural state will always have an oxidation number of zero.

Examples include $\mathrm{Na}(\mathrm{s}), \mathrm{Cl}_{2}(\mathrm{~g}), \mathrm{H}_{2}(\mathrm{~g}), \mathrm{Hg}(\mathrm{l}), \mathrm{N}_{2}(\mathrm{~g}), \mathrm{Fe}(\mathrm{s})$, etc.

- For ions with only a single atom, the oxidation number is equal to the charge on the ion.
$>$ Elements in Group 1A: always +1
$>$ Elements in Group 2A: always +2
$>$ Aluminum: always +3
$>$ Fluorine is always -1 in compounds with other elements.
$>$ Oxygen is always -2 in compounds with other elements except when combined with fluorine or peroxides.
$>\mathrm{Cl}, \mathrm{Br}$ and I will always be -1 in compounds with other elements unless combined with oxygen or fluorine.
$>$ Hydrogen is always +1 in compounds with other elements except when combined with metals to form metal hydrides. The oxidation number for a hydride $\left(\mathrm{H}^{-}\right)$is -1 .
- Remember the sum of the oxidation numbers is zero (0) for a neutral compound and is equal to the net charge for a polyatomic ion.

NH_{3}	$\mathrm{~N}=$
ClO^{-}	$\mathrm{Cl}=$
$\mathrm{H}_{3} \mathrm{PO}_{4}$	$\mathrm{P}=$
MnO_{4}^{-}	$\mathrm{Mn}=$
$\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}$	Cr
$\mathrm{H}_{2} \mathrm{PO}_{4}^{-}$	P
$\mathrm{SO}_{3}{ }^{2-}$	S
$\mathrm{N}_{2} \mathrm{O}_{4}$	N

Combustion Reactions: type of redox reaction

$$
\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(l)+3 \mathrm{O}_{2}(g) \rightarrow 2 \mathrm{CO}_{2}(g)+3 \mathrm{H}_{2} \mathrm{O}(g)
$$

CHEM 134-F 2018
Lab Sec \qquad

ICE 1

Name
UMDID\#
\qquad

1) Silver ions can be precipitated from aqueous solutions by the addition of aqueous chloride $\mathrm{Ag}^{+}(\mathrm{aq})+\mathrm{Cl}^{-}(\mathrm{aq}) \rightarrow \mathrm{AgCl}(\mathrm{s})$

Silver chloride is virtually insoluble in water so that the reaction appears to go to completion. How many grams of solid NaCl must be added to 25.0 mL of $0.366 \mathrm{M} \mathrm{AgNO}_{3}$ solution to completely precipitate the silver?
2) How would you prepare 9.70 g of $\mathrm{PbCl}_{2}(s)$ from a 0.100 M solution of $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$ and a 0.200 M solution of CaCl_{2} ?

CHEM 134-Fall 2018 ICE 2
Lab Sec \qquad

Name
UMDID\# \qquad

A 25.0 mL sample of $\mathrm{H}_{2} \mathrm{SO}_{4}$ is neutralized with NaOH . What is the concentration of the $\mathrm{H}_{2} \mathrm{SO}_{4}$ if 35.0 mL of 0.150 M NaOH are required to completely neutralize the acid?

