Chapter 16 Acid-Base Equilibria

16.1 Acids and Bases: A Brief Review

- Acids: taste sour and cause certain dyes to change color.
- Bases: taste bitter and feel soapy.
- Arrhenius concept o acids and bases:
- An acid is a substance that, when dissolved in water, increases in concentration of H^{+}ions.
- Example: HCI is an acid
- An Arrhenius base is a substance that, when dissolved in water, increases the concentration of OH^{-}.
- Example: NaOH is a base.
- This definition is quite narrow in scope as it limits us to aqueous solutions.

16.2 Bronsted-Lowry Acids and Bases

- More general definition for acids and bases is bases on the fact that acid-base reactions involve proton transfer.

The Ion \mathbf{H}^{+}in Water

- The $\mathrm{H}^{+}(\mathrm{aq})$ ion is simply a proton with no surrounding valence electrons.
- In water, clusters of hydrates of $\mathrm{H}^{+}(\mathrm{aq})$ ions form.
- The simplest cluster is $\mathrm{H}_{3} \mathrm{O}^{+}$(aq)
- We call this a hydronium ion.
- Larger clusters are also possible (such as $\mathrm{H}_{5} \mathrm{O}_{2}{ }^{+}$and $\mathrm{H}_{9} \mathrm{O}_{4}{ }^{+}$)
- Generally we use $\mathrm{H}^{+}(\mathrm{aq})$ and $\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})$ interchangeably.

Proton-Transfer Reactions

- In the Bronsted-Lowry system, a Bronsted-Lowry acid is a species that donates
H^{+}and a Bronsted-Lowry base is a species that accepts H^{+}.
- Therefore a Bronsted-Lowry base does not need to contain OH^{-}
- NH_{3} is a Bronsted-Lowry base but not an Arrhenius base.
- Consider $\mathrm{NH}_{3}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \leftrightarrow \mathrm{NH}_{4}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})$:
- $\mathrm{H}_{2} \mathrm{O}$ donates a proton to ammonia.
- Water is acting as an acid.
- NH_{3} accepts a proton from water.
- Ammonia is acting as a base.
- Amphoteric substances can behave as acids and bases.

Conjugate Acid-Base Pairs

- Whatever is left of the acid after the proton is donated is called its conjugate base.
- Similarly, a conjugate acid is formed by adding a proton to the base.
- Consider $\mathrm{HA}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \leftrightarrow \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{A}^{-}(\mathrm{aq})$:
- HA and A^{-}are conjugate acid-base pair
- A^{-}is called the conjugate base.
- After $\mathrm{H}_{2} \mathrm{O}$ (base) gains a proton it is converted into $\mathrm{H}_{3} \mathrm{O}^{+}$(acid).
- $\mathrm{H}_{3} \mathrm{O}^{+}$is the conjugate acid.
- Therefore, $\mathrm{H}_{2} \mathrm{O}$ and $\mathrm{H}_{3} \mathrm{O}^{+}$are a conjugate acid-base pair.

Relative Strengths of Acids and Bases

- Show a slight tendency to abstract proton.
- In every acid-base reaction, the position of the equilibrium favors the transfer of a proton from the stronger acid to the stronger base.
- H^{+}is the strongest acid that can exist in equilibrium in aqueous solution.
- OH^{-}is the strongest base that can exist in equilibrium in aqueous solution.

16.3 The Autoionization of Water

- We can write an equilibrium constant expression for the autoionization of water.

$$
\mathrm{K}_{\mathrm{eq}}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{OH}^{-}\right]}{\left[\mathrm{H}_{2} \mathrm{O}\right]^{2}}
$$

- Because $\mathrm{H}_{2} \mathrm{O}(1)$ is a pure liquid, we can simplify this expression:

$$
\left[\mathrm{H}_{2} \mathrm{O}\right]^{2} \mathrm{~K}_{\mathrm{eq}}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{OH}^{-}\right]=\mathrm{K}_{\mathrm{w}}
$$

- K_{w} is called the ion-product constant.
- At $25^{\circ} \mathrm{C}$ the ion-product of water is:

$$
1.0 \times 10^{-14}=\mathrm{K}_{\mathrm{w}}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{OH}^{-}\right]
$$

- This applies to pure water as well as to aqueous solutions.
- A solution is neutral if $\left[\mathrm{OH}^{-}\right]=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$
- If the $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]>\left[\mathrm{OH}^{-}\right]$, the solution is acidic.
- If the $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]<\left[\mathrm{OH}^{-}\right]$, the solution is basic.

16.4 The pH Scale

- In most solutions $\left[\mathrm{H}^{+}\right]$is quite small.
- We express the $\left[\mathrm{H}^{+}\right]$in terms of $\mathbf{p H}$.

$$
\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]=-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right]
$$

- This is a logarithmic scale
- A change in $\left[\mathrm{H}^{+}\right]$by a factor of 10 causes the pH to change by 1 unit.
- Most pH values fall between 0 and 14 .
- In neutral solutions at $25^{\circ} \mathrm{C}, \mathrm{pH}=7.00$
- In acidic solutions, $\left[\mathrm{H}^{+}\right]>1.0 \times 10^{-7}$ so $\mathrm{pH}<7.00$.
- As the pH decreases, the acidity of the solution increases.
- In acidic solutions, $\left[\mathrm{H}^{+}\right]<1.0 \times 10^{-7}$ so $\mathrm{pH}>7.00$.
- As the pH increases, the basicity of the solution increase (acidity decreases).

Other "p" Scales

- We can use a similar system to describe the $\left[\mathrm{OH}^{-}\right]$.
$\mathrm{pOH}=-\log \left[\mathrm{OH}^{-}\right]$
- Recall that the value of K_{w} at $25^{\circ} \mathrm{C}$ is 1.0×10^{-14}
- Thus we can describe a relationship between pH and pOH .

$$
-\log \left[\mathrm{H}^{+}\right]+\left(-\log \left[\mathrm{OH}^{-}\right]\right)=\mathrm{pH}+\mathrm{pOH}=-\log \mathrm{K}_{\mathrm{w}}=14.00
$$

Measuring pH

- The most accurate method to measure pH is to use a pH meter.
- However, certain dyes change color as pH changes.
- They are called acid-base indicators.
- Indicators are less precise than pH meters.
- Many indicators do not have a sharp color change as a function of pH .
- Most acid-base indicators can exist as either an acid or a base.
- Some natural products can be used as indicators (tea is colorless in acid and brown in base; red cabbage extract is another natural indicator).

16.5 Strong Acids and Bases

Strong Acids

- The most common strong acids are $\mathrm{HCl}, \mathrm{HBr}, \mathrm{HI}, \mathrm{HNO}_{3}, \mathrm{HClO}_{3}, \mathrm{HClO}_{4}$, and $\mathrm{H}_{2} \mathrm{SO}_{4}$.
- Strong acids are strong electrolytes.
- Ionize completely in solution:
$\mathrm{HNO}_{3}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{NO}_{3}^{-}(\mathrm{aq})$
- Example: Nitric acid ionizes completely in solution.
- Since H^{+}and $\mathrm{H}_{3} \mathrm{O}^{+}$are used interchangeably, we write $\mathrm{HNO}_{3}(\mathrm{aq})+\mathrm{H}^{+}(\mathrm{aq}) \rightarrow \mathrm{NO}_{3}{ }^{-}(\mathrm{aq})$
- In solution the strong acid is usually the only source of H^{+}.
- Therefore, the pH of a solution of a monoprotic acid may usually be calculated directly from the initial molarity of the acid.

Strong Bases

- The most common strong bases are ionic hydroxides of the alkali metals or the heavier alkaline earth metals (e.g., $\mathrm{NaOH}, \mathrm{KOH}$, and $\mathrm{Ca}(\mathrm{OH})_{2}$ are all strong bases.
- Strong bases are strong electrolytes and dissociate completely in solution.
- For example: $\quad \mathrm{NaOH}(\mathrm{aq}) \rightarrow \mathrm{Na}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})$
- The pOH (and thus the pH) of a strong base may be calculated using the initial molarity of the base.
- Not all bases contain the OH^{-}ion.
- The oxide, hydride and nitride ions are stronger bases than hydroxide.
- They are thus able to abstract a proton from water and generate OH^{-}.

$$
\begin{aligned}
& \mathrm{O}^{2-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow 2 \mathrm{OH}^{-}(\mathrm{aq}) \\
& \mathrm{H}^{-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{H}_{2}(\mathrm{~g})+\mathrm{OH}^{-}(\mathrm{aq})
\end{aligned}
$$

$$
\mathrm{N}^{3-}(\mathrm{aq})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{NH}_{3}(\mathrm{aq})+3 \mathrm{OH}^{-}(\mathrm{aq})
$$

16.6 Weak Acids

- Weak acids are only partially ionized in aqueous solution.
- There is a mixture of ions and un-ionized acid in solution.
- Therefore, weak acids are in equilibrium.

$$
\mathrm{HA}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \leftrightarrow \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{A}^{-}(\mathrm{aq})
$$

Or:

$$
\mathrm{HA}(\mathrm{aq}) \leftrightarrow \mathrm{H}^{+}(\mathrm{aq})+\mathrm{A}^{-}(\mathrm{aq})
$$

- We can write an equilibrium constant expression or this dissociation:

$$
\mathrm{K}_{\mathrm{a}}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{A}^{-}\right]}{[\mathrm{HA}]} \quad \text { or } \quad \mathrm{K}_{\mathrm{a}}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{A}^{-}\right]}{[\mathrm{HA}]}
$$

- K_{a} is called the acid-dissociation constant.
- The subscript "a" indicates that this is the equilibrium constant for the dissociation of an acid.
- Note that $\left[\mathrm{H}_{2} \mathrm{O}\right]$ is omitted from the K_{a} expression. $\left(\mathrm{H}_{2} \mathrm{O}\right.$ is a pure liquid.)
- The larger the K_{a} the stronger the acid.
- K_{a} is larger since there are more ions present at equilibrium relative to un-ionized molecules.
- If $\mathrm{K}_{\mathrm{a}} \gg 1$, then the acid is complexly ionized and the acid is a strong acid.

Using K_{a} to Calculate pH

- If the K_{a} value is quite small, we find that we can make a simplifying assumption.
- Assume that x is the negligible compared to the initial concentration of the acid.
- If x is $<5 \%$ of the initial concentration, the assumption is probably a good one.
- If x is $>5 \%$ of the initial concentration, then it may be best to solve the quadratic equation or use successive approximations.
- Weak acids are only partially ionized.
- Percent ionization is another method to assess acid strength.
- For the reaction

$$
\begin{gathered}
\mathrm{HA}(\mathrm{aq}) \leftrightarrow \mathrm{H}^{+}(\mathrm{aq})+\mathrm{A}^{-}(\mathrm{aq}) \\
\% \text { ionization }=\frac{\left[\mathrm{H}^{+}\right]_{\text {equilibrium }}}{[\mathrm{HA}]_{\text {initial }}} \times 100
\end{gathered}
$$

- Percent ionization relates to the equilibrium H^{+}concentration, $\left[\mathrm{H}^{+}\right]_{\text {equilibrium }}$ to the initial HA concentration, $[\mathrm{HA}]_{\text {initial }}$

Polyprotic Acids

- Polyprotic acids have more than one ionizable proton.
- The protons are removed in successive steps.
- Consider the weak acid, $\mathrm{H}_{2} \mathrm{SO}_{3}$ (sulfurous acid):

$$
\begin{array}{lc}
\mathrm{H}_{2} \mathrm{SO}_{3}(\mathrm{aq}) \leftrightarrow \mathrm{H}^{+} & (\mathrm{aq})+\mathrm{HSO}_{3}^{-}(\mathrm{aq}) \\
\mathrm{HSO}_{3}^{-}(\mathrm{aq}) \leftrightarrow \mathrm{H}^{+}(\mathrm{aq})+\mathrm{SO}_{3}{ }^{2-}(\mathrm{aq}) & \mathrm{K}_{\mathrm{a} 1}=1.7 \times 10^{-2} \\
\mathrm{~K}_{\mathrm{a} 2}=6.4 \times 10^{-8}
\end{array}
$$

16.7 Weak Bases

- Weak bases remove protons from substances.
- There is an equilibrium between the base and the resulting ions:

Weak base $+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \leftrightarrow$ conjugate acid $+\mathrm{OH}^{-}(\mathrm{aq})$

- Example:

$$
\mathrm{NH}_{3}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \leftrightarrow \mathrm{NH}_{4}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})
$$

- The base-dissociation constant, K_{b}, is defined as

$$
\mathrm{K}_{\mathrm{b}}=\frac{\left[\mathrm{NH}_{4}^{+}\right]\left[\mathrm{OH}^{-}\right]}{\left[\mathrm{NH}_{3}\right]}
$$

- The larger K_{b}, the stronger the base.

Types of Weak Bases

- Weak bases generally fall into one of two categories
- Neutral substances with a lone pair of electrons that can accept protons.
- Most neutral weak bases contain nitrogen.
- Amines are related ammonia and have one or ore N-H bonds replaced with $\mathrm{N}-\mathrm{C}$ bonds (e.g., $\mathrm{CH}_{3} \mathrm{NH}_{2}$ is methylamine).
- Anions of weak acids are also weak bases.
- Example: CIO^{-}is the conjugate base of HCIO (weak acid):

$$
\mathrm{CIO}^{-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \leftrightarrow \mathrm{HCIO}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq}) \quad \mathrm{K}_{\mathrm{b}}=3.3 \times 10^{-7}
$$

16.8 Relationship Between K_{a} and K_{b}

- The net reaction is the autoionization of water.

$$
\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \leftrightarrow \mathrm{H}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})
$$

- Recall that:

$$
\mathrm{K}_{\mathrm{w}}=\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]
$$

For a conjugate acid-base pair:

$$
\mathrm{K}_{\mathrm{a}} \times \mathrm{K}_{\mathrm{b}}=\mathrm{K}_{\mathrm{w}}
$$

- Alternatively,

$$
\mathrm{pK}_{\mathrm{a}}+\mathrm{pK}_{\mathrm{b}}=\mathrm{pK}_{\mathrm{w}}=14.00\left(\text { at } 25^{\circ} \mathrm{C}\right)
$$

- Thus, the larger K_{a} (and the smaller pK_{a}), the smaller K_{b} (and the larger $\mathrm{p} \mathrm{K}_{\mathrm{b}}$).
- The stronger the acid, the weaker its conjugate base and vice versa.

16.9 Acid-Base Properties of Salt Solutions

- Nearly all the salts are strong electrolytes.
- Many salt icons can react with water to form OH^{-}or H^{+}.
- This process is called hydrolysis.
- Anions from weak acids are basic.
- Anions from strong acids are neutral.
- Anions with ionizable protons (e.g., HSO_{4}^{-}) are amphoteric.
- They are capable of acting as an acid or a base.
- All cations, except those of the akali metals or heavier alkaline earth metals are weak acids.
- The pH of a solution may be qualitatively predicted using the following guidelines:
- Salts derived from a strong acid and strong base are neutral.
- Examples: $\mathrm{NaCl}, \mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}$.
- Salts derived from a strong base and weak acide are basic
- Examples: $\mathrm{NaClo}_{3} \mathrm{Ba}\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right)_{2}$
- Salts derived from a weak base and strong acid are acidic.
- Example:: $\mathrm{NH}_{4} \mathrm{CL}$
- Salts derived from a weak acid and weak base can be either acidic or basic.
- Equilibrium rules apply!

16.10 Acid-Base Behavior and Chemical Structure

Factors That Affect Acid Strength

- Consider H-X
- For this substance to be an acid
- The $\mathrm{H}-\mathrm{X}$ bond must be polar with H^{8+} and X^{8-}
- In ionic hydrides, the bond polarity is reversed
- The $\mathrm{H}-\mathrm{X}$ bond is polar with H^{8-} and X^{8+}
- In this case, the substance is a base.

Binary Acids

- The H-X bond polarity is important in determining relative acid strength in any period of the periodic table.
- Acid strength increases and base strength decreases from left to right across a period as the electronegativity of X increases.

Oxyacids

- Acids that contain OH groups (and often additional oxygen atoms) bound to the central atom are called oxyacids.
- The strength of the acid depends on Y and the atoms attached to Y.
- As the electronegativity of Y increases, so does the acidity of the substance.
- As the number of O atoms attached to Y increase the $\mathrm{O}-\mathrm{H}$ bond polarity, and consequently the strength of the acid increases.
- Example, HClO is a weaker acid than HClO_{2} which is weaker than HClO_{3} which is weaker than HClO_{4}

Carboxylic Acids

- There is a large class of acids that contain $\mathrm{a}=\mathrm{COOH}$ group (a carboxyl group).
- Acids that contain this group are called carboxylic acids.
- Examples: acetic acid, benzoic acid, formic acid.
- Why are these molecules acidic?
- The additional oxygen atom on the carboxyl group increases the polarity of the OH bond and stabilizes the conjugate base.
- The conjugate base exhibits resonance.
- This gives it the ability to delocalize the negative charge over the carboxylate group, further increasing the stability of the conjugate base.

16.11 Lewis Acids and Bases

- Lewis proposed a new definition of acids and bases that emphasizes the shared electron pair.
- A Lewis acid is an electron pair acceptor
- A Lewis base is an electron pair donor
- Note: Lewis acids and bases do not need to contain protons.

