Chapter 16 Acid-Base Equilibria

16.1 Acids and Bases: A Brief Review

- Acids: taste sour and cause certain dyes to change color.
- Bases: taste bitter and feel soapy.
- Arrhenius concept o acids and bases:
 - An acid is a substance that, when dissolved in water, increases in
 - concentration of H^+ ions.
 - Example: HCI is an acid
 - An Arrhenius base is a substance that, when dissolved in water, increases the concentration of OH⁻.
 - Example: NaOH is a base.
 - This definition is quite narrow in scope as it limits us to aqueous solutions.

16.2 Bronsted-Lowry Acids and Bases

• More general definition for acids and bases is bases on the fact that acid-base reactions involve proton transfer.

The Ion H⁺ in Water

- The H^+ (aq) ion is simply a proton with no surrounding valence electrons.
- In water, clusters of hydrates of H⁺ (aq) ions form.
- The simplest cluster is H_3O^+ (aq)
 - We call this a **hydronium ion**.
 - Larger clusters are also possible (such as $H_5O_2^+$ and $H_9O_4^+$)
- Generally we use H^+ (aq) and H_3O^+ (aq) interchangeably.

Proton-Transfer Reactions

- In the Bronsted-Lowry system, a **Bronsted-Lowry acid** is a species that donates
- H^+ and a **Bronsted-Lowry base** is a species that accepts H^+ .
 - Therefore a Bronsted-Lowry base does not need to contain OH
 - NH₃ is a Bronsted-Lowry base but not an Arrhenius base.
- Consider NH₃ (aq) + H₂O (l) \leftrightarrow NH₄⁺ (aq) + OH⁻ (aq):
- H₂O donates a proton to ammonia.
 - Water is acting as an acid.
- NH₃ accepts a proton from water.
 - Ammonia is acting as a base.
 - Amphoteric substances can behave as acids and bases.

Conjugate Acid-Base Pairs

- Whatever is left of the acid after the proton is donated is called its conjugate base.
- Similarly, a conjugate acid is formed by adding a proton to the base.
- Consider HA (aq) + H₂O (l) \leftrightarrow H₃O⁺ (aq) + A⁻ (aq):
 - HA and A⁻ are **conjugate acid-base pair**
 - A⁻ is called the **conjugate base**.
- After H_2O (base) gains a proton it is converted into H_3O^+ (acid).

- H_3O^+ is the conjugate acid.
- Therefore, H_2O and H_3O^+ are a conjugate acid-base pair.

Relative Strengths of Acids and Bases

- Show a slight tendency to abstract proton.
- In every acid-base reaction, the position of the equilibrium favors the transfer of a proton from the stronger acid to the stronger base.
 - H⁺ is the strongest acid that can exist in equilibrium in aqueous solution.
 - OH is the strongest base that can exist in equilibrium in aqueous solution.

16.3 The Autoionization of Water

• We can write an equilibrium constant expression for the autoionization of water.

$$K_{eq} = \frac{[H_3O^+][OH^-]}{[H_2O]^2}$$

• Because $H_2O(1)$ is a pure liquid, we can simplify this expression:

$$[H_2O]^2 K_{eq} = [H_3O^+] [OH^-] = K_w$$

- K_w is called the ion-product constant.
- At 25°C the ion-product of water is:

$$1.0 \ge 10^{-14} = K_w = [H_3O^+] [OH^-]$$

- This applies to pure water as well as to aqueous solutions.
 - A solution is neutral if $[OH^-] = [H_3O^+]$
 - If the $[H_3O^+] > [OH^-]$, the solution is acidic.
 - If the $[H_3O^+] < [OH^-]$, the solution is basic.

16.4 The pH Scale

- In most solutions [H⁺] is quite small.
- We express the [H⁺] in terms of **pH**.
 - $pH = -\log[H^+] = -\log[H_3O^+]$
 - This is a logarithmic scale
 - A change in $[H^+]$ by a factor of 10 causes the pH to change by 1 unit.
- Most pH values fall between 0 and 14.
 - In neutral solutions at 25° C, pH = 7.00
 - In acidic solutions, $[H^+] > 1.0 \times 10^{-7}$ so pH < 7.00.
 - As the pH decreases, the acidity of the solution increases.
 - In acidic solutions, $[H^+] < 1.0 \times 10^{-7}$ so pH > 7.00.
 - As the pH increases, the basicity of the solution increase (acidity decreases).

Other "p" Scales

- We can use a similar system to describe the [OH⁻]. pOH= -log[OH⁻]
- Recall that the value of K_w at 25°C is 1.0 x 10⁻¹⁴
 - Thus we can describe a relationship between pH and pOH.
 - $-\log[H^+] + (-\log[OH^-]) = pH + pOH = -\log K_w = 14.00$

Measuring pH

- The most accurate method to measure pH is to use a pH meter.
 - However, certain dyes change color as pH changes.
 - They are called acid-base indicators.
 - Indicators are less precise than pH meters.
 - Many indicators do not have a sharp color change as a function of pH.
 - Most acid-base indicators can exist as either an acid or a base.
 - Some natural products can be used as indicators (tea is colorless in acid and brown in base; red cabbage extract is another natural indicator).

16.5 Strong Acids and Bases

Strong Acids

• The most common strong acids are HCl, HBr, HI, HNO₃, HClO₃, HClO₄, and H₂SO₄.

- Strong acids are strong electrolytes.
 - Ionize completely in solution:

 $HNO_3(aq) + H_2O(l) \rightarrow H_3O^+(aq) + NO_3^-(aq)$

- Example: Nitric acid ionizes completely in solution.
 - Since H⁺ and H₃O⁺ are used interchangeably, we write

$$HNO_3(aq) + H^+(aq) \rightarrow NO_3^-(aq)$$

- In solution the strong acid is usually the only source of H^+ .
 - Therefore, the pH of a solution of a monoprotic acid may usually be calculated directly from the initial molarity of the acid.

Strong Bases

•

- The most common strong bases are ionic hydroxides of the alkali metals or the heavier alkaline earth metals (e.g., NaOH, KOH, and Ca(OH)₂ are all strong bases.
- Strong bases are strong electrolytes and dissociate completely in solution.
 - For example: NaOH (aq) \rightarrow Na⁺ (aq) + OH⁻ (aq)
- The pOH (and thus the pH) of a strong base may be calculated using the initial molarity of the base.
- Not all bases contain the OH⁻ ion.
 - The oxide, hydride and nitride ions are stronger bases than hydroxide.
 - They are thus able to abstract a proton from water and generate OH⁻.

 $O^{2-}(aq) + H_2O(l) \rightarrow 2OH^-(aq)$ H⁻(aq) + H₂O(l) \rightarrow H₂(g) + OH⁻(aq)

$$N^{3-}(aq) + 3H_2O(l) \rightarrow NH_3(aq) + 3OH^{-}(aq)$$

16.6 Weak Acids

- Weak acids are only partially ionized in aqueous solution.
 - There is a mixture of ions and un-ionized acid in solution.
 - Therefore, weak acids are in equilibrium.

 $HA (aq) + H_2O (l) \leftrightarrow H_3O^+ (aq) + A^- (aq)$

Or:

HA (aq)
$$\leftrightarrow$$
 H⁺ (aq) + A⁻ (aq)

• We can write an equilibrium constant expression or this dissociation:

$$K_a = \frac{[H_3O^+][A^-]}{[HA]}$$
 or $K_a = \frac{[H^+][A^-]}{[HA]}$

- K_a is called the **acid-dissociation constant**.
- The subscript "a" indicates that this is the equilibrium constant for the dissociation of an acid.
- Note that [H₂O] is omitted from the K_a expression. (H₂O is a pure liquid.)
- The larger the K_a the stronger the acid.
- K_a is larger since there are more ions present at equilibrium relative to un-ionized molecules.
- If $K_a >> 1$, then the acid is complexly ionized and the acid is a strong acid.

Using K_a to Calculate pH

- If the K_a value is quite small, we find that we can make a simplifying assumption.
 - Assume that x is the negligible compared to the initial concentration of the acid.

• If x is <5% of the initial concentration, the assumption is probably a good one.

- If x is > 5% of the initial concentration, then it may be best to solve the quadratic equation or use successive approximations.
- Weak acids are only partially ionized.
- Percent ionization is another method to assess acid strength.
- For the reaction

HA (aq)
$$\leftrightarrow$$
 H⁺ (aq) + A⁻ (aq)

% ionization =
$$\frac{[H^+]_{equilibrium}}{[HA]_{initial}} \times 100$$

• Percent ionization relates to the equilibrium H^+ concentration, $[H^+]_{equilibrium}$ to the initial HA concentration, $[HA]_{initial}$

Polyprotic Acids

- **Polyprotic acids** have more than one ionizable proton.
- The protons are removed in successive steps.
 - Consider the weak acid, H₂SO₃ (sulfurous acid):

$$\begin{array}{ll} H_2 {\rm SO}_3 \left({\rm aq} \right) \leftrightarrow {\rm H}^+ \left({\rm aq} \right) + {\rm HSO}_3^- \left({\rm aq} \right) & {\rm K}_{\rm a1} = 1.7 \ {\rm x} \ 10^{-2} \\ {\rm HSO}_3^- \left({\rm aq} \right) \leftrightarrow {\rm H}^+ \left({\rm aq} \right) + {\rm SO}_3^{-2} \left({\rm aq} \right) & {\rm K}_{\rm a2} = 6.4 \ {\rm x} \ 10^{-8} \end{array}$$

16.7 Weak Bases

- Weak bases remove protons from substances.
- There is an equilibrium between the base and the resulting ions:

Weak base + H₂O (l) \leftrightarrow conjugate acid + OH⁻ (aq)

• Example:

$$NH_3$$
 (aq) + H_2O (l) $\leftrightarrow NH_4^+$ (aq) + OH^- (aq)

• The **base-dissociation constant**, K_b, is defined as

$$K_{b} = \frac{[NH_{4}^{+}] [OH^{-}]}{[NH_{3}]}$$

• The larger K_b, the stronger the base.

Types of Weak Bases

- Weak bases generally fall into one of two categories
 - Neutral substances with a lone pair of electrons that can accept protons.
 - Most neutral weak bases contain nitrogen.
 - Amines are related ammonia and have one or ore N-H bonds replaced with N-C bonds (e.g., CH₃NH₂ is methylamine).
 - Anions of weak acids are also weak bases.
 - Example: CIO⁻ is the conjugate base of HCIO (weak acid): CIO⁻ (aq) + H₂O(l) \leftrightarrow HCIO (aq) + OH⁻(aq) K_b = 3.3 x 10⁻⁷

16.8 Relationship Between K_a and K_b

- The net reaction is the autoionization of water. $H_2O(l) \leftrightarrow H^+(aq) + OH^-(aq)$
- Recall that:

$$\mathbf{K}_{\mathbf{w}} = [\mathbf{H}^+][\mathbf{OH}^-]$$

For a conjugate acid-base pair:

$$K_a \times K_b = K_w$$

- Alternatively, $pK_a + pK_b = pK_w = 14.00 \text{ (at } 25^{\circ}\text{C)}$
- Thus, the larger K_a (and the smaller pK_a), the smaller K_b (and the larger pK_b).
 - The stronger the acid, the weaker its conjugate base and vice versa.

16.9 Acid-Base Properties of Salt Solutions

- Nearly all the salts are strong electrolytes.
- Many salt icons can react with water to form OH or H⁺.
- This process is called hydrolysis.
 - Anions from weak acids are basic.
 - Anions from strong acids are neutral.
 - Anions with ionizable protons (e.g., HSO₄) are amphoteric.
 - They are capable of acting as an acid or a base.
 - All cations, except those of the akali metals or heavier alkaline earth metals are weak acids.

• The pH of a solution may be qualitatively predicted using the following guidelines:

- Salts derived from a strong acid and strong base are neutral.
 - Examples: NaCl, Ca(NO₃)₂.
- Salts derived from a strong base and weak acide are basic
 - Examples: NaClo₃ Ba(C₂H₃O₂)₂
 - Salts derived from a weak base and strong acid are acidic.
 - Example:: NH₄CL
- Salts derived from a weak acid and weak base can be either acidic or basic.
 - Equilibrium rules apply!

16.10 Acid-Base Behavior and Chemical Structure

Factors That Affect Acid Strength

• Consider H-X

•

- For this substance to be an acid
 - The H-X bond must be polar with H^{8+} and X^{8-}
- In ionic hydrides, the bond polarity is reversed
 - The H-X bond is polar with H^{8-} and X^{8+}
 - In this case, the substance is a base.

Binary Acids

- The H-X bond polarity is important in determining relative acid strength in any period of the periodic table.
 - Acid strength increases and base strength decreases from left to right across a period as the electronegativity of X increases.

Oxyacids

- Acids that contain OH groups (and often additional oxygen atoms) bound to the central atom are called **oxyacids**.
- The strength of the acid depends on Y and the atoms attached to Y.
 - As the electronegativity of Y increases, so does the acidity of the substance.
- As the number of O atoms attached to Y increase the O-H bond polarity, and consequently the strength of the acid increases.

• Example, HClO is a weaker acid than $HClO_2$ which is weaker than $HClO_3$ which is weaker than $HClO_4$

Carboxylic Acids

- There is a large class of acids that contain a =COOH group (a carboxyl group).
- Acids that contain this group are called **carboxylic acids**.
- Examples: acetic acid, benzoic acid, formic acid.
- Why are these molecules acidic?
- The additional oxygen atom on the carboxyl group increases the polarity of the O-H bond and stabilizes the conjugate base.
- The conjugate base exhibits resonance.
- This gives it the ability to delocalize the negative charge over the carboxylate group, further increasing the stability of the conjugate base.

16.11 Lewis Acids and Bases

- Lewis proposed a new definition of acids and bases that emphasizes the shared electron pair.
 - A Lewis acid is an electron pair acceptor
 - A Lewis base is an electron pair donor
 - Note: Lewis acids and bases do not need to contain protons.