Answers to Section Review page 467

6. 1.63 ppm He
7. 4.00 g NaOH
8. 1.1 M LiCl
9. 0.838 M NaOCl
10. $5.30 \mathrm{~g} \mathrm{AgNO}_{3}$
11. $5.8 \times 10^{3} \mathrm{~g} \mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}$ and $2.0 \times 10^{3} \mathrm{~g} \mathrm{H}_{2} \mathrm{O}$
12. KCl ; there is the same amount of moles of each substance, but KCl has the higher molecular weight.
13. Molarity can be used for normal lab concentrations, and ppm for very dilute solutions, such as pollutants in water.
