Answers to section review in page 311

Answers to Section Review
e mole ratio
c molar mass of the substance; Avogadro's
mber, $\frac{6.022 \times 10^{23} \text { particles }}{1 \text { mole }}$
$\frac{.01 \mathrm{~g} \mathrm{CO}_{2}}{\mathrm{~mol} \mathrm{CO}_{2}} ; \frac{6.022 \times 10^{23} \text { molecules } \mathrm{H}_{2} \mathrm{O}}{1 \mathrm{~mol} \mathrm{H}}$
5.48 mol BrCl
780.0 g BrCl
$1.20 \times 10^{4} \mathrm{~g} \mathrm{Br}_{2}$

5. a. $1.42 \mathrm{~mol} \mathrm{CO}_{2}$
b. 47.2 mL CO 2
6. Coefficients in the balanced chemical equation give mole ratios, not mass ratios.
7. a. $2 \mathrm{LiOH}+\mathrm{CO}_{2} \rightarrow \mathrm{Li}_{2} \mathrm{CO}_{3}+\mathrm{H}_{2} \mathrm{O}$ $2 \mathrm{NaOH}+\mathrm{CO}_{2} \rightarrow \mathrm{Na}_{2} \mathrm{CO}_{3}+\mathrm{H}_{2} \mathrm{O}$
b. $524 \mathrm{~g} \mathrm{NaOH} ; 313 \mathrm{~g} \mathrm{LiOH}$
c. Less mass of LiOH is needed to remove a given amount of CO_{2}, so the overall mass of the shuttle and its cargo decreases.
