Answers to Section 3 Review Page 285

7. a solid precipitate, a gas, or a molecular compound, such as water
8. a. $\mathrm{Cl}_{2}(g)+2 \mathrm{NaBr}(a q) \longrightarrow 2 \mathrm{NaCl}(a q)+$ $\mathrm{Br}_{2}(l)$; displacement
b. $\mathrm{CaO}(s)+\mathrm{H}_{2} \mathrm{O}(l) \rightarrow \mathrm{Ca}(\mathrm{OH})_{2}(\mathrm{aq})$; synthesis
c. $\mathrm{Ca}\left(\mathrm{ClO}_{3}\right)_{2}(\mathrm{~s}) \longrightarrow \mathrm{CaCl}_{2}(\mathrm{~s})+3 \mathrm{O}_{2}(\mathrm{~g})$; decomposition

Answers to Section 3 Review, continued

d. $2 \mathrm{AgNO}_{3}(\mathrm{aq})+\mathrm{K}_{2} \mathrm{SO}_{4}(\mathrm{aq}) \longrightarrow \mathrm{Ag}_{2} \mathrm{SO}_{4}(\mathrm{~s})+2 \mathrm{KNO}_{3}(\mathrm{aq})$; double-displacement
e, $\mathrm{Zn}(s)+\mathrm{CuBr}_{2}(a q) \rightarrow \mathrm{ZnBr}_{2}(a q)+\mathrm{Cu}(s)$; displacement
f. $2 \mathrm{C}_{8} \mathrm{H}_{18}(\mathrm{l})+25 \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 16 \mathrm{CO}_{2}(\mathrm{~g})+18 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$; combustion
9. a. no reaction
b. $\mathrm{Mg}(s)+\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq}) \longrightarrow \mathrm{Cu}(\mathrm{s})+\mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq})$
c. $4 \mathrm{Al}(\mathrm{s})+3 \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{Al}_{2} \mathrm{O}_{3}(\mathrm{~s})$
d. $\mathrm{H}_{2} \mathrm{SO}_{4}(a q)+2 \mathrm{KOH}(a q) \rightarrow \mathrm{K}_{2} \mathrm{SO}_{4}(a q)+2 \mathrm{H}_{2} \mathrm{O}(l)$
10. a. $2 \mathrm{HgO} \longrightarrow 2 \mathrm{Hg}+\mathrm{O}_{2}$; decomposition
b. $2 \mathrm{C}_{3} \mathrm{H}_{7} \mathrm{OH}+9 \mathrm{O}_{2} \longrightarrow 6 \mathrm{CO}_{2}+8 \mathrm{H}_{2} \mathrm{O}$; combustion
c. $\mathrm{Zn}+\mathrm{CuSO}_{4} \longrightarrow \mathrm{Cu}+\mathrm{ZnSO}_{4}$; displacement
d. $\mathrm{BaCl}_{2}+\mathrm{Na}_{2} \mathrm{SO}_{4} \longrightarrow 2 \mathrm{NaCl}+\mathrm{BaSO}_{4}$; double-displacement
e. $\mathrm{Zn}+\mathrm{F}_{2} \longrightarrow \mathrm{ZnF}_{2}$; synthesis
f. $2 \mathrm{C}_{5} \mathrm{H}_{10}+15 \mathrm{O}_{2} \rightarrow 10 \mathrm{CO}_{2}+10 \mathrm{H}_{2} \mathrm{O}$; combustion
11. when the single element is below the element it is trying to replace on the activity series

