Answers to Practice Problems F
 1. N_{2} is limiting, 85.3%
 2. $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$ is limiting, 80.0%
 3. Br_{2} is limiting, 90.9%

Homework -GENERAL

Additional Practice

1. When $4.00 \times 10^{5} \mathrm{~kg}$ of H_{2} is added to an excess of $\mathrm{N}_{2}, 1.04 \times$ $10^{6} \mathrm{~kg}$ of NH_{3} is produced. What is the percentage yield of the reaction? Ans. 46.2\%
2. A standard laboratory preparation of iodine is the following reaction.
$2 \mathrm{NaI}(a q)+\mathrm{MnO}_{2}(s)+$ $2 \mathrm{H}_{2} \mathrm{SO}_{4}(a q) \rightarrow \mathrm{Na}_{2} \mathrm{SO}_{4}(a q)+$ $\mathrm{MnSO}_{4}(a q)+2 \mathrm{H}_{2} \mathrm{O}(l)+\mathrm{I}_{2}(s)$
Balance the equation, then find the percentage yield of I_{2} if the actual yield of I_{2} was 39.8 g when the amount of NaI used was 62.6 g. Ans. 75.1%
3. A 15.0 g sample of magnesium reacts with hydrochloric acid to form magnesium chloride and hydrogen. During the reaction, 46.6 g of magnesium chloride was formed. What was the percentage yield? Ans. 79.3\%
