Answers to problems in page 314

1 Answers to Practice

Problems E

1. PCl_{3} is excess, $\mathrm{H}_{2} \mathrm{O}$ is limiting, theoretical yield is 109 g HCl
2. $\mathrm{H}_{2} \mathrm{O}$ is excess, PCl_{3} is limiting, theoretical yield is 59.7 g HCl
3. PCl_{3} is excess, $\mathrm{H}_{2} \mathrm{O}$ is limiting, theoretical yield is 101 g HCl

Homework - General

Additional Practice Write a balanced chemical equation for each of the following problems, and then determine the excess reactant, the limiting reactant, and the theoretical yield (in grams) of the first product mentioned.

1. Zinc citrate, $\mathrm{Zn}_{3}\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}_{7}\right)_{2}$, an ingredient in toothpaste, is made by reacting zinc carbonate and citric acid, $\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{O}_{7}$. The other products are $\mathrm{H}_{2} \mathrm{O}$ and CO_{2}. There are $6.00 \mathrm{~mol} \mathrm{ZnCO}_{3}$ and $10.0 \mathrm{~mol} \mathrm{C}_{6} \mathrm{H}_{8} \mathrm{O}_{7}$. Ans. $3 \mathrm{ZnCO}_{3}$ $+2 \mathrm{C}_{6} \mathrm{H}_{8} \mathrm{O}_{7} \rightarrow \mathrm{Zn}_{3}\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}_{7}\right)_{2}+$ $3 \mathrm{H}_{2} \mathrm{O}+3 \mathrm{CO}_{2} ; \mathrm{C}_{6} \mathrm{H}_{8} \mathrm{O}_{7}$ is in excess, ZnCO_{3} is limiting, and the theoretical yield is $1.15 \times 10^{3} \mathrm{~g}$ $\mathrm{Zn}_{3}\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}_{7}\right)_{2}$.
2. Hydrogen sulfide gas is formed when HCl reacts with FeS.
FeCl_{2} is the other product.
130.5 g of FeS is mixed with 70.4 g of HCl in solution. Ans. $\mathrm{FeS}+2 \mathrm{HCl} \rightarrow \mathrm{H}_{2} \mathrm{~S}+\mathrm{FeCl}_{2} ; \mathrm{FeS}$ is in excess, HCl is limiting, and the theoretical yield is $32.91 \mathrm{~g} \mathrm{H}_{2} \mathrm{~S}$. [s. Logical
