Answers to problems in page 304

Answers to Practice Problems A

- 1. a. 0.670 mol O₂
 - b. 1.34 mol H₂O
- 2. a. 6.60 mol Al
 - b. 6.60 mol Fe
 - c. 3.30 mol Al₂O₃

Homework

GENERAL

Additional Practice

1. How many moles of H₂CO₃ can form when 2.57 mol CO₂ reacts with excess H₂O?

$$H_2O(l) + CO_2(g) \rightarrow H_2CO_3(aq)$$

Ans. 2.57 mol H₂CO₃

2. How many moles of O₂ are necessary to completely burn 4.33 mol C₃H₈? How many moles of CO₂ form? How many moles of H₂O form?

$$C_3H_8(g) + 5O_2(g) \rightarrow 3CO_2(g) + 4H_2O(l)$$

Ans. 21.6 mol O₂; 13.0 mol CO₂; 17.3 mol H₂O

3. In the combustion of propane, how many moles of C₃H₈ are needed to combine completely with 2.96 mol O₂? How many moles of CO₂ form? How many moles of H₂O form? Ans.

0.592 mol C₃H₈; 1.78 mol CO₂; 2.37 mol H₂O

Logical