Answers to practice problems page 541

Answers to Practice Problems A

- 1. $[H_3O^+] = 1.38 \times 10^{-11} \text{ M}$
- **2.** $[OH^-] = 2.22 \times 10^{-14} M$
- 3. $[H_3O^+] = 2.67 \times 10^{-13} \text{ M}$
- **4.** $[OH^{-}] = 5.00 \times 10^{-14} \text{ M}$
- **5.** $[OH^-] = 2.4 \times 10^{-4} \text{ M};$ $[H_3O^+] = 4.2 \times 10^{-11} \text{ M}$

Homework

BASIC

Additional Practice

- Calculate the hydroxide ion concentration in an aqueous solution that has a concentration of hydronium ion equal to 1.55 × 10⁻² M. Ans. 6.45 × 10⁻¹³ M
- What is [OH⁻] for a 0.125 M solution of HCl? Ans. 8.00 × 10⁻¹⁴ M
- What is [H₃O⁺] in a solution of 0.000500 M NaOH? Ans. 2.00 × 10⁻¹¹ M
- 4. What is [OH⁻] in a 0.00240 M solution of the strong acid HBr? Ans. 4.17 × 10⁻¹² M
- **5.** Based on the definition of K_{10} ; show mathematically that in pure water, $[H_3O^+] = [OH^-] = 1 \times 10^{-7} \text{ M. Ans. } [H_3O^+] = [OH^-] = x; x^2 = 1.00 \times 10^{-14}; x = 1 \times 10^{-7} \text{ M}$