Answers to Practice Problems H in page 365

$$
\begin{aligned}
& \text { Answers to Practice } \\
& \text { Problems } \mathrm{H} \\
& \text { 1. } \Delta G=[(1 \mathrm{~mol})(-394.4 \mathrm{~kJ} / \mathrm{mol})]- \\
& {[(0)+[0)]=-394.4 \mathrm{~kJ}} \\
& \text { Yes, the reaction is spontaneous. } \\
& \text { 2. } \Delta G=[(1 \mathrm{~mol})(-604.0 \mathrm{~kJ} / \mathrm{mol}]+ \\
& (1 \mathrm{~mol})(-394.4 \mathrm{k}] / \mathrm{mol})]-[(1 \mathrm{~mol}) \\
& (-1128.8 \mathrm{~kJ} / \mathrm{mol})]=130.4 \mathrm{~kJ} \\
& \text { No, the reaction is not spontanerous. }
\end{aligned}
$$

Homework

Gentral.
Additional Practice Have students determine the change in Gibbs energy for the following chemical reactions. Remind students that they must multiply a molar Gibbs energy by the number of moles of that substance in the reaction. Assume that the coefficients represent the number of moles involved in the reaction.

1. $2 \mathrm{KClO}_{3}(\mathrm{~s}) \rightarrow 2 \mathrm{KCl}(\mathrm{s})+3 \mathrm{O}_{2}(\mathrm{~g})$, ΔG^{0} for $\mathrm{KClO}_{3}(s)=$ $-303.1 \mathrm{~kJ} / \mathrm{mol}$ Ans. -212.2 kJ
2. $2 \mathrm{AgNO}_{3}(s)+\mathrm{MgCl}_{2}(s) \rightarrow$ $2 \mathrm{AgCl}(\mathrm{s})+\mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}(s), \Delta G_{f}^{0}$ for $\mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}=-589.4 \mathrm{~kJ} / \mathrm{mol}$ Ans. -150.2 kJ
3. $\mathrm{CH}_{4}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+$ $2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$ Ans. -800.8 kJ
[S Logical
