Answers to Practice Problems G in page 364

Answers to Practice
 Problems G

1. $\Delta G=\Delta H-T \Delta S=-76 \mathrm{~kJ}-$
$(298.15 \mathrm{~K})(-0.117 \mathrm{~kJ} / \mathrm{K})=-41 \mathrm{kj}$
Yes, the reaction is spontaneous.
2. $\Delta G=\Delta H-T \Delta S=11 \mathrm{~kJ}-$ $(298.15 \mathrm{~K} /(0.049 \mathrm{~kJ} / \mathrm{K})=-3.6 \mathrm{~kJ}$
Yes, the reaction is spontancous.
3. $\Delta G=\Delta H-T \Delta S=11 \mathrm{~kJ}-$ $(298.15 \mathrm{~K})(0.041 \mathrm{~kJ} / \mathrm{K})=-1.2 \mathrm{~kJ}$
The reaction is spontaneous.

Homework

General

Additional Practice Have students determine the change in Gibbs energy for the following chemical reactions using the changes in entropy and enthalpy values. Remind students that they must multiply a molar entropy and a molar enthalpy by the number of moles of that substance in the reaction. Assume that the coefficients represent the number of moles involved in the reaction.

1. $2 \mathrm{HgO}(s) \longrightarrow 2 \mathrm{Hg}(l)+\mathrm{O}_{2}(g)$ at $25^{\circ} \mathrm{C}$ Ans. $\Delta G=111.2 \mathrm{~kJ}$
2. $\mathrm{CO}(\mathrm{g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \rightarrow \mathrm{HCOOH}(t)$ at $500^{\circ} \mathrm{C}$ Ans. $\Delta G=-1013.2 \mathrm{~kJ}$
$3.4 \mathrm{NH}_{3}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 4 \mathrm{NO}(\mathrm{g})+$ $6 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$ at $25^{\circ} \mathrm{C}$ Ans. $\Delta \mathrm{G}=$ $-1008.7 \mathrm{~kJ}$
노 Logical
