Answers to Practice Problems D in page 556.

Answers to Practice
 Problems D
 1. $6.9 \times 10^{-3} \mathrm{M}$
 2. 0.585 M
 3. 4.674×10^{-3} moles
 4. $2.31 \times 10^{-5} \mathrm{M}$

Homework - Gevert
Additional Practice

1. A volume of 20.00 mL of a solution of HNO_{3} that has an unknown concentration is titrated with 34.37 mL of a 0.8220 M solution of NaOH . What is the concentration of the HNO_{3} solution? Ans. 1.413 M HNO_{3}
2. A lab worker makes up 1000.00 mL of a KOH solution but forgets to record the mass of dissolved KOH . When a 42.82 mL sample of the solution is titrated with a 1.209 M solution of HCl , 28.35 mL of the acid solution are required to reach the equivalence point. What is the concentration of the KOH solution, and what mass of KOH was dissolved? Ans. 0.8004 M KOH ; 44.91 g KOH
3. What volume of a 1.366 M solution of NaOH would be required to titrate 47.22 mL of a 2.075 M solution of $\mathrm{H}_{2} \mathrm{SO}_{4}$? Ans. 143.5 mL (note that $\mathrm{H}_{2} \mathrm{SO}_{4}$ has two ionizable protons)
4. A solution of sodium hydroxide was made by dissolving 4.500 g NaOH in water to form 1.000 L of solution. Then, 25.00 mL of the solution were titrated with 0.1020 M HCl . How many milliliters of HCl were required? Ans. 27.57 mL

LS Logical

