Answers to Practice Problems D in Page 510

Answers to Practice Problems D

- 1. $K_{sp} = 8.4 \times 10^{-12} = [Ag^+]^2 (1.28 \times 10^{-4}); [Ag] = 2.6 \times 10^{-4}$
- 2. $[Pb]^{2+} = K_{sp}/[SO_4^{2-}] = 1.8 \times 10^{-8}/1.0 = 1.8 \times 10^{-8}$
- 3. $K_{sp} = 1.17 \times 10^{-5} = [Pb^{2+}]$ $(2.86 \times 10^{-2})^2$; $[Pb^{2+}] = 1.43 \times 10^{-2}$
- **4.** $K_{sp} = 1.72 \times 10^{-7} = [Cu^+]$ $[Cl^-]$; $[Cu^+] = 4.15 \times 10^{-4}$

Additional Practice

- a. Calculate the concentration of Ba²⁺ ion in a saturated solution of BaSO₄ both before and after the SO₄²⁻ concentration has been boosted to 0.010 M by the addition of Na₂SO₄. The K_{sp} of BaSO₄ is 1.1 × 10⁻¹⁰. By what factor is the Ba²⁺ concentration decreased? Ans. 1.0 × 10⁻⁵ M; after: 1.1 × 10⁻⁸ M. The Ba²⁺ concentration is reduced to approximately 0.001 of its original concentration.
- b. A chemist wishes to reduce the silver ion concentration in saturated AgCl solution to 2.0 × 10⁻⁶ M. What concentration of Cl⁻ would achieve this goal? Ans. [Cl⁻] = 9.0 × 10⁻⁵
- c. The K_{sp} of MgCO₃ is 6.8 × 10⁻⁶. The concentration of CO₃²⁻¹ ions in a solution containing both MgCO₃ and Na₂CO₃ is 4.0 × 10⁻² M. What is the concentration of magnesium ions if the solution is saturated with respect to MgCO₃? Ans. [Mg²⁺] = 1.7 × 10⁻⁴

Logical