Answers to Practice
 Problems D

1. $K_{s p}=8.4 \times 10^{-12}=\left[\mathrm{Ag}^{+}\right]^{2}(1.28 \times$
$\left.10^{-4}\right) ;[\mathrm{Ag}]=2.6 \times 10^{-2}$
2. $[\mathrm{Pb}]^{2+}=K_{s p} /\left[\mathrm{SO}_{4}^{2-}\right]=1.8 \times$
$10^{-3} / 1.0=1.8 \times 10^{-8}$
3. $K_{s p}=1.17 \times 10^{-5}=\left[\mathrm{Pb}^{2+}\right]$
$\left(2.86 \times 10^{-2}\right)^{2} ;\left[\mathrm{Pb}^{2+}\right]=1.43 \times$
10^{-2}
4. $K_{\text {st }}=1.72 \times 10^{-7}=\left\{\mathrm{Cu}^{+}\right\}$
$[\mathrm{Cl}] ;\left[\mathrm{Cu}^{1}\right]=4.15 \times 10^{-4}$

Additional Practice

a. Calculate the concentration of Ba^{2+} ion in a saturated solution of BaSO_{4} both before and after the SO_{4}^{2-} concentration has been boosted to 0.010 M by the addition of $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The $K_{s p}$ of BaSO_{4} is 1.1×10^{-10}. By what factor is the Ba^{2+} concentration decreased? Ans. $1.0 \times 10^{-5} \mathrm{M}$; after: $1.1 \times 10^{-3} \mathrm{M}$. The Ba^{2+} concentration is reduced to approximately 0.001 of is ariginal concentration.
b. A chemist wishes to reduce the silver ion concentration in saturated AgCl solution to $2.0 \times$ $10^{-6} \mathrm{M}$. What concentration of Cl^{-}would achieve this goal? Ans. $\left[\mathrm{Cl}^{-}\right]=9.0 \times 10^{-5}$
c. The $\mathrm{K}_{\text {sp }}$ of MgCO_{3} is $6.8 \times$ 10^{-6}. The concentration of CO_{3}^{2-} ions in a solution containing both MgCO_{3} and $\mathrm{Na}_{2} \mathrm{CO}_{3}$ is $4.0 \times 10^{-2} \mathrm{M}$. What is the concentration of magnesium ions if the solution is sacurated with respect to MgCO_{3} ? Ans. $\left[\mathrm{Mg}^{2+}\right]-$ 1.7×10^{-4}
Logical

