Answers to Practice Problems C in page 545

> Answers to Practice
> Problems C
> 1. $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=5.0 \times 10^{-4} \mathrm{M}$
> 2. $\left[\mathrm{OH}^{-}\right]=5.0 \times 10^{-3} \mathrm{M}$
> 3. $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=7.9 \times 10^{-9} \mathrm{M} ;\left[\mathrm{OH}^{-}\right]=$ $1.3 \times 11^{-6} \mathrm{M}$
> 4. $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=2.14 \times 10^{-8} \mathrm{M} ;\left[\mathrm{OH}^{-}\right]=$ $4.7 \times 10^{-7} \mathrm{M}$. The hydroxide ion concentration of $4.7 \times 10^{-7} \mathrm{M}$ does lie somewhat outside the normal range. The patient has mild alkalosis and should be concerned.

Homework - General

Additional Practice

1. What is the hydronium ion concentration of lemon juice, which has a pH of 2.25 ?
Ans. $5.6 \times 10^{-3} \mathrm{M}$
2. Milk of magnesia has a pH of 10.65. What is $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$? What is $\left[\mathrm{OH}^{-}\right]$? Ans. $2.2 \times 10^{-11} \mathrm{M}$; $4.5 \times 10^{-4} \mathrm{M}$
3. Determine the concentrations of hydronium ion and hydroxide ion in stomach acid, which has a pH of 2.0. Ans. $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=$ $0.01 \mathrm{M} ;\left[\mathrm{OH}^{-}\right]=1 \times 10^{-12} \mathrm{M}$

LSogical

