Answers to Practice Problems C in page 545

Answers to Practice Problems C

- 1. $[H_3O^+] = 5.0 \times 10^{-4} \text{ M}$
- **2.** $[OH^{-}] = 5.0 \times 10^{-3} M$
- 3. $[H_3O^+] = 7.9 \times 10^{-9} \text{ M}; [OH^-] = 1.3 \times 10^{-6} \text{ M}$
- **4.** $[H_3O^+] = 2.14 \times 10^{-8} \text{ M}$; $[OH^-] = 4.7 \times 10^{-7} \text{ M}$. The hydroxide ion concentration of $4.7 \times 10^{-7} \text{ M}$ does lie somewhat outside the normal range. The patient has mild alkalosis and should be concerned.

Homework.

GENERAL

Additional Practice

- What is the hydronium ion concentration of lemon juice, which has a pH of 2.25?
 Ans. 5.6 × 10⁻³ M
- Milk of magnesia has a pH of 10.65. What is [H₃O⁺]? What is [OH⁻]? Ans. 2.2 × 10⁻¹¹ M; 4.5 × 10⁻⁴ M
- Determine the concentrations of hydronium ion and hydroxide ion in stomach acid, which has a pH of 2.0. Ans. [H₃O⁺] = 0.01 M; [OH⁻] = 1 × 10⁻¹² M

Logical