Answers to Practice Problems C in page 509

Homework General

Additional Practice

a. Calculate the solubility product constant of Hgl_{2} if the Hg^{2+} concentration in a saturated solution is $1.9 \times 10^{-10} \mathrm{M}$. Ans. $K_{\text {sp }}=2.7 \times 10^{-29}$
b. Calculate the solubility product constant of $\mathrm{Fe}(\mathrm{OH})_{2}$ if the OH^{-} concentration in a saturated solution is $4.6 \times 10^{-6} \mathrm{M}$. Ans. $K_{s p}=4.9 \times 10^{-17}$
c. The $K_{s p}$ of CdF_{2} is 6.4×10^{-3}. Calculate the concentration of the ions in a saturated solution of CdF_{2}.
Ans. $\left[\mathrm{Cd}^{2+}\right]=0.12,\left[\mathrm{~F}^{-}\right]=0.24$
© Logical

Answers to Practice

Problems C

1. $K_{\text {sp }}=\left[\mathrm{Cu}^{+}\right]\left[\mathrm{Br}^{-}\right]=\left(7.9 \times 10^{-5}\right)^{2}=$ 6.2×10^{-9}
2. $K_{s p}=\left[\mathrm{Ca}^{2+}\right]^{3}\left[\mathrm{PO}_{4}^{3-}\right]^{2}=(3.42 \times$ $\left.10^{-7}\right)^{3}\left(2.28 \times 10^{-7}\right)^{2}=2.08 \times$ 10^{-33}
3. $K_{\text {sp }}=\left[\mathrm{Ag}^{+}\right]\left[\mathrm{Cl}^{-}\right]=(1.34 \times$ $\left.10^{-5}\right)^{2}=1.80 \times 10^{-10}$
