Answers to Practice Problems B in page 506

Homework General

Additional Practice

a. Determine the equilibrium concentrations of $\mathrm{H}_{3} \mathrm{O}^{+}$and HCO_{3}^{-} in a solution of carbonic acid at $25^{\circ} \mathrm{C}$ in which $\left[\mathrm{H}_{2} \mathrm{CO}_{3}\right]=$ $0.027, K_{e q}=4.3 \times 10^{-7}$, and $\mathrm{H}_{2} \mathrm{CO}_{3}(a q)+\mathrm{H}_{2} \mathrm{O}(l) \rightleftarrows$ $\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{HCO}_{3}^{-}(\mathrm{aq})$ Ans. $1.1 \times 10^{-4} \mathrm{M}\left(\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\left[\mathrm{HCO}_{3}^{-}\right]\right)$
b. Determine $\left[\mathrm{H}_{2}\right]$ equilibrium at 700 K when $\left[\mathrm{CH}_{3} \mathrm{OH}\right]=$ $0.25,[\mathrm{CO}]=0.0098, K_{\text {eq }}=290$, and $\mathrm{CO}(\mathrm{g})+2 \mathrm{H}_{2}(\mathrm{~g}) \rightleftarrows$ $\mathrm{CH}_{3} \mathrm{OH}(\mathrm{g})$ Ans. $\left[\mathrm{H}_{2}\right]=0.30$
© Intrapersonal
Answers to Practice
Problems B

1. $[\mathrm{NO}]^{2}=K_{e q}\left[\mathrm{~N}_{2}\right]\left[\mathrm{O}_{2}\right] ;[\mathrm{NO}]^{2}=$ $\left(1.65 \times 10^{-3}\right)\left(1.8 \times 10^{-3}\right)^{2}(4.2 \times$ $\left.10^{-4}\right) ;[\mathrm{NO}]=3.5 \times 10^{-5}$
2. $\left[\mathrm{SO}_{2}\right]^{2}=\frac{\left[\mathrm{SO}_{3}\right]^{2}}{K_{e q}\left[\mathrm{O}_{2}\right]}=$ $=(0.260)^{2} /(4.32)(0.045)=0.59$
