Acids and Bases

By

Nada Saab, Ph.D. M.A.T

Acids

Acids: taste sour and cause certain dyes to change color. Example HCl .

ACIDS

Hydronium ion: $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\left[\mathrm{H}^{+}\right]>1.0 \times 10^{-7} \mathrm{M}$

$$
\begin{gathered}
\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]=-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right] \\
{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=10^{-\mathrm{pH}}} \\
\mathrm{pH}<7.00
\end{gathered}
$$

BASES

Bases: taste bitter and feel soapy. Example NaOH

BASES

Hydroxide ion: $\left[\mathrm{OH}^{-}\right]>1.0 \times 10^{-7} \mathrm{M}$

$$
\mathrm{pOH}=-\log \left[\mathrm{OH}^{-}\right]
$$

$$
\left[\mathrm{OH}^{-}\right]=10^{-\mathrm{pOH}}
$$

$$
\mathrm{pH}>7.00
$$

Relationship Between ACIDS and BASES

K_{w} is called the ion-product constant.
At $25^{\circ} \mathrm{C}$ the ion-product of water is:

ACIDS and BASES

$$
\begin{gathered}
\mathrm{K}_{\mathrm{w}}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{OH}^{-}\right]=\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]=1.0 \times 10^{-14} \\
\mathrm{pH}+\mathrm{pOH}=14
\end{gathered}
$$

Derivatives:

$$
\begin{gathered}
\mathrm{pH}=14-\mathrm{pOH} \text { and } \mathrm{pOH}=14-\mathrm{pH} \\
{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=1.0 \times 10^{-14} /\left[\mathrm{OH}^{-}\right]} \\
{\left[\mathrm{OH}^{-}\right]=1.0 \times 10^{-14} /\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]}
\end{gathered}
$$

Strong Acid

Strong acid: 100% ionized in $\mathrm{H}_{2} \mathrm{O}$. Example HCl :

$$
\begin{gathered}
\mathrm{HCl}(g)+\mathrm{H}_{2} \mathrm{O}(l) \longrightarrow \mathrm{H}_{3} \mathrm{O}^{+}(a q)+\mathrm{Cl}^{-}(a q) \\
\mathrm{pH}=-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right] \\
{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=[\mathrm{HCl}]}
\end{gathered}
$$

Strong Base

Strong Base: 100% ionized in $\mathrm{H}_{2} \mathrm{O}$.

1) Example NaOH :

a) $\left[\mathrm{OH}^{-}\right]=[\mathrm{NaOH}]$
b) $\mathrm{pOH}=-\log \left[\mathrm{OH}^{-}\right]$
c) $\mathrm{pH}+\mathrm{pOH}=14 \mathrm{so}, \mathrm{pH}=14-\mathrm{pOH}$
2) Example $\mathrm{Ca}(\mathrm{OH})_{2}$:
$\mathrm{Ca}(\mathrm{OH})_{2} \longrightarrow \mathrm{Ca}^{2+}{ }_{(a q)}+2 \mathrm{OH}^{-}{ }_{(a q)}$
a) $\left[\mathrm{OH}^{-}\right]=2\left[\mathrm{Ca}(\mathrm{OH})_{2}\right]$

Weak Acid

Weak acids are only partially ionized in aqueous solution.
It has K_{a} : is called the acid-dissociation constant.
The larger the K_{a} the stronger the acid.

There is a mixture of ions and un-ionized acid in solution. Weak acids are in equilibrium.

$$
\mathrm{HA}(a q)+\mathrm{H}_{2} \mathrm{O}(l) \leftrightarrow \mathrm{H}_{3} \mathrm{O}^{+}(a q)+\mathrm{A}^{-}(a q)
$$

Or:

$$
\mathrm{HA}(a q) \leftrightarrow \mathrm{H}^{+}(a q)+\mathrm{A}^{-}(a q)
$$

K_{a} : acid-dissociation constant.

$$
\mathrm{K}_{\mathrm{a}}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{A}^{-}\right]}{[\mathrm{HA}]} \text { or } \quad \mathrm{K}_{\mathrm{a}}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{A}^{-}\right]}{[\mathrm{HA}]}
$$

Weak Bases

Weak bases remove protons from substance. It has K_{b} : is called the basedissociation constant. The larger the K_{a} the stronger the base.

There is an equilibrium between the base and the resulting ions:
Weak base $+\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \leftrightarrow$ conjugate acid $+\mathrm{OH}^{-}(a q)$
$\mathrm{NH}_{3}(a q)+\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \leftrightarrow \mathrm{NH}_{4}{ }^{+}(a q)+\mathrm{OH}^{-}(a q)$
K_{a} : acid-dissociation constant.

$$
\mathrm{K}_{\mathrm{b}}=\frac{\left[\mathrm{NH}_{4}^{+}\right]\left[\mathrm{OH}^{-}\right]}{\left[\mathrm{NH}_{3}\right]}
$$

Relationship Between K_{a} and K_{b}

At $25^{\circ} \mathrm{C}$:

Relationship Between K_{a} and K_{b}

$$
\begin{aligned}
& \mathrm{K}_{\mathrm{a}} \times \mathrm{K}_{\mathrm{b}}=1.0 \times 10^{-14} \\
& \mathrm{pK}_{\mathrm{a}}+\mathrm{pK}_{\mathrm{b}}=14.00 \\
& \mathrm{pK}_{\mathrm{a}}=-\log \mathrm{K}_{\mathrm{a}} \\
& \mathrm{pK}_{\mathrm{b}}=-\log \mathrm{K}_{\mathrm{b}}
\end{aligned}
$$

The larger K_{a} (and the smaller pK_{a}), the smaller K_{b} (and the larger pK_{b}). The stronger the acid, the weaker its conjugate base and vice versa.

Buffered Solutions- I

A buffer consists of a mixture of a weak acid (HX) and its conjugate base (X^{-}):

$$
\begin{aligned}
& \mathrm{HX}(a q) \leftrightarrow \mathrm{H}^{+}(a q)+\mathrm{X}^{-}(a q) \\
& \text { conjugate base }
\end{aligned}
$$

Henderson-Hasselbalch Equation

$$
\mathrm{pH}=\mathrm{pK}_{\mathrm{a}}+\log \frac{[\mathrm{X}-]}{-\mathrm{HX}]}=\mathrm{pK}_{\mathrm{a}}+\log \frac{[\text { base }]}{[\text { acid }]}
$$

$$
\mathrm{pK}_{\mathrm{a}}=-\log \mathrm{K}_{\mathrm{a}}
$$

$$
K_{a} \times K_{b}=1.0 \times 10^{-14}
$$

$$
\mathrm{pH}=-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right]
$$

Buffered Solutions- II

A buffer contains approximately equal amount of a weak acid (HX) and its conjugate base (X). (not necessarily equal amount but a substantial concentration of each)

$$
\begin{aligned}
& \mathrm{HX}(\mathrm{aq}) \leftrightarrow \mathrm{H}^{+}(\mathrm{aq})+\mathrm{X}^{-}(\mathrm{aq}) \\
& \text { conjugate base }
\end{aligned}
$$

Henderson-Hasselbalch Equation

$$
\begin{gathered}
\mathrm{pH}=\mathrm{pK}_{\mathrm{a}}+\log \frac{[\mathrm{X}-]}{-\frac{1}{}}[\mathrm{HX}] \\
{[\mathrm{X}-]=[\mathrm{HX}]}
\end{gathered}
$$

Buffer Capacity:

The greater the concentration of the two buffer components, the greater the ability of the buffer to resist the changes in pH (the greater the capacity). Lowering the concentration will lower the capacity of the buffer.

Buffer Efficiency:

The efficiency of the buffer is the greatest when the concentrations of the two components are equal, but this condition is not necessary for the buffer to work.

$$
[\mathrm{X}-]=[\mathrm{HX}] \text { so }[\mathrm{X}-] /[\mathrm{HX}]=1
$$

Selecting the Buffer:

The pK_{a} of the weak acid to be used in buffer should be as close as possible to the desired pH .

Buffered Solutions-II

A buffered solution or buffer is a solution that resists a change in pH upon addition of small amounts of strong acid or strong base.

$$
\begin{aligned}
& \mathrm{HX}(\mathrm{aq}) \leftrightarrow \mathrm{H}^{+}(\mathrm{aq})+\mathrm{X}^{-}(\mathrm{aq}) \\
& \text { acid }
\end{aligned}
$$

When a small amount of OH^{-}is added to the buffer, the OH^{-}reacts with HX to produce X - and water.

When a small amount of H^{+}is added to the buffer, X^{-}is consumed to produce HX.

The $[\mathrm{X}-] /[\mathrm{HX}]$ ratio is more or less constant, so the pH does not change significantly.

Buffered Solutions-III Addition of Acid

Adding more of the buffer acid will make the buffer more resistant to the pH change when adding more base.
Addition of an acid $\left(\mathrm{H}^{+}\right)$to a buffered solution:

$$
\begin{aligned}
& \mathrm{HX}(\mathrm{aq}) \leftrightarrow \mathrm{H}^{+}(\mathrm{aq})+\mathrm{X}^{-}(\mathrm{aq}) \\
& \text { conjugate base }
\end{aligned}
$$

Henderson-Hasselbalch Equation

$$
\mathrm{pH}=\mathrm{pK}_{\mathrm{a}}+\log \frac{\left[\text { base }-\mathrm{H}^{+}\right]}{\left[\text {acid }+\mathrm{H}^{+}\right]}=\mathrm{pK}_{\mathrm{a}}+\log \frac{\left[\mathrm{X}^{-}-\mathrm{H}^{+}\right]}{\left[\mathrm{HX}+\mathrm{H}^{+}\right]}
$$

Buffered Solutions-III Addition of Base

Adding more of the buffer base will make the buffer more resistant to pH change when adding more acid.
Addition of a base (OH^{-}) to a buffered solution:

$$
\begin{aligned}
& \mathrm{HX}(\mathrm{aq}) \leftrightarrow \mathrm{H}^{+}(\mathrm{aq})+\mathrm{X}^{-}(a q) \\
& \text { conjugate base }
\end{aligned}
$$

Henderson-Hasselbalch Equation

$$
\mathrm{pH}=\mathrm{pK}_{\mathrm{a}}+\log \frac{\left[\text { base }+\mathrm{OH}^{-}\right]}{\left[\text {acid }-\mathrm{OH}^{-}\right]}=\mathrm{pK}_{\mathrm{a}}+\log \frac{\left[\mathrm{X}^{-}+\mathrm{OH}^{-}\right]}{\left[\mathrm{HX}-\mathrm{OH}^{-}\right]}
$$

